263 REFERENCES Abozed, M., Melaine, Y., and Saci, K. (2009). The Influence of Work Environmental Factors on Motivation to Transfer Management Training: Case Study of the Libyan Oil Industry. Paper presented at the 4 th Annual Conference Liverpool BEAN. Aggarwal, U., and Bhargava, S. (2009). Reviewing the relationship between human resource practices and psychological contract and their impact on employee attitude and behaviours: A conceptual model. Journal of European Industrial Training, 33(1), 4-31. Agnaia, A. A. (1996). Assessment of management training needs and selection for training: the case of Libyan companies. International Journal of Manpower, 17(3), 31-51. Agarwala, T. (2003). Innovative human resource practices and organizational commitment: an empirical investigation. International Journal of Human Resource Management, 14(2), 175-197. Ahlbrandt, T. (2010). Falcon Oil and Gas Ltd.,―. Australia’s Beetaloo Basin Offers Falcon Oil and Gas Major Reserves Potential”, The American Oil and Gas Reporter. Ahlbrandt, T. S. (2002). Future petroleum energy resources of the world. International Geology Review, 44(12), 1092-1104. Ahmad, S., & Schroeder, R. G. (2003). The impact of human resource management practices on operational performance: recognizing country and industry differences. Journal of operations management, 21(1), 19-43. Aiken, M., & Hage, J. (1966). Organizational alienation: A comparative analysis. American Sociological Review, 497-507. Ali, I. S. (2011). Oil revenue and economic development case of Libyan economy (1970- 2007). Ali, A. B. A. A. E. (2011). Human Resource Management Practices and Organizational Performance: Study in Sudan National Oil Company (SNOC). Universiti Utara Malaysia. Al Damoe, F. M. A. (2014). The mediating effect of organizational climate on the relationship between HRM practices and HR outcomes in the Libyan public sector. Universiti Utara Malaysia. 264 Al-Muslim, M., and Arifin, Z. (2015). The Usability of SEEQ in Quality Evaluation of Arabic Secondary Education in Malaysia. International Education Studies, 8(3), 202. Al-Refaie, A. (2015). Effects of human resource management on hotel performance using structural equation modeling. Computers in Human Behavior, 43, 293-303. Al-Ghazawi, M. (2006). The Impact of Investments in Human Resources Activities on the Effectiveness of Investment in Human Capital: The Case of Commercial Banks in Jordan. Available at SSRN 2103564. Alaghi, K. (2012). Operating profit, productivity indexes and net earnings. African Journal of Business Management, 6(11), 4397-4405. Amalasunta, G. (2010). Factors that determine job performance: University of Iasi, Romania. Anderson, E. W., and Fornell, C. (1994). A customer satisfaction research prospectus. Service quality: New directions in theory and practice, 241-268. Appelbaum, E. (2000). Manufacturing advantage: Why high-performance work systems pay off. Cornell University Press. Andersson, F., Brown, C., Campbell, B., Chiang, H., & Park, Y. (2008). The effect of HRM practices and R&D investment on worker productivity The Analysis of Firms and Employees: Quantitative and Qualitative Approaches (pp. 19-43): University of Chicago Press. Arbuckle, J. L. (2005). Amos 6.0 user‘s guide. Chicago, IL: SPSS: Inc. Arend, R. J. (2004). The Definition of Strategic Liabilities, and their Impact on Firm Performance*. Journal of Management Studies, 41(6), 1003-1027. Armstrong, M., & Baron, A. (2002). Strategic HRM: The key to improved business performance. CIPD Publishing. Armstrong, M., and Taylor, S. (2014). Armstrong's handbook of human resource management practice: Kogan Page Publishers. Arnold, H. J., and Feldman, D. C. (1982). A multivariate analysis of the determinants of job turnover. Journal of Applied Psychology, 67(3), 350. Ashkanasy, N. M., Härtel, C. E., and Daus, C. S. (2002). Diversity and emotion: The new frontiers in organisational behavior research. Journal of Management, 28(3), 307- 3 265 Athanasiadis, A., Kostopoulou, S., & Philalithis, A. (2015). Regional Decentralisation in the Greek Health Care System: Rhetoric and Reality.Global journal of health science, 7(6), 55. Bartelsman, E. J., Haltiwanger, J., & Scarpetta, S. (2008). rCross Coun'try Differences in Productivity: The Role of Allocative Effi ciencys. University of Maryland mimeo. Babin, B. J., Hair, J. F., and Boles, J. S. (2008). Publishing research in marketing journals using structural equation modeling. The Journal of Marketing Theory and Practice, 16(4), 279-286. Bagozzi, R. P., and Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing science, 16(1), 74-94. Bailey, T. (1993). Organisational innovation in the apparel industry. Industrial relations: a journal of economy and society, 32(1), 30-48. Baird, K. M., Harrison, G. L., and Reeve, R. C. (2004). Adoption of activity management practices: a note on the extent of adoption and the influence of organisational and cultural factors. Management Accounting Research, 15(4), 383-399. Bandara, K., and Weligodapola, M. (2013). A Study on the Relationship between Labour Productivity and Motivation; With Special Reference to Hirdaramani Group of Companies. Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99-120. Baron, R., and Shane, S. (2007). Entrepreneurship: A process perspective: Cengage Learning. Baron, R. M., and Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology, 51(6), 1173. Bardhan, P., & Mookherjee, D. (2003). Poverty alleviation effort of West Bengal panchayats. Economic and Political Weekly, 39(9), 965-974. Barrett, A., and O'Connell, P. J. (2001). Does training generally work? The returns to in- company training. Industrial and labor relations review, 54(3), 647-662. Barringer, B. R., Jones, F. F., & Neubaum, D. O. (2005). A quantitative content analysis of the characteristics of rapid-growth firms and their founders. Journal of business venturing, 20(5), 663-687. 266 Barsky, A. (2008). Understanding the ethical cost of organisational goal-setting: A review and theory development. Journal of Business Ethics, 81(1), 63-81. Bartel, A. P. (2004). Human resource management and organisational performance: Evidence from retail banking. Industrial and Labor Relations Review, 181-203. Bassanini, A., Garnero, A., Marianna, P., and Martin, S. (2010). Institutional determinants of worker flows: A cross-country/cross-industry approach: OECD Publishing. Batt, R. (2002). Managing customer services: Human resource practices, quit rates, and sales growth. Academy of management Journal, 45(3), 587-597. Bau, F., & Dowling, M. J. (2007). An empirical study of reward and incentive systems in German entrepreneurial firms. Available at SSRN 1004732. Beheshtifar, M., and Norozy, T. (2013). Social Skills: A Factor to Employees' Success. International Journal of Academic Research in Business and Social Sciences, 3(3), 74. Bentler, P. M. (1995). EQS structural equations program manual: Multivariate Software. Bhattacharya, M., Gibson, D. E., and Doty, D. H. (2005). The effects of flexibility in employee skills, employee behaviors, and human resource practices on firm performance. Journal of Management, 31(4), 622-640. Bindra, N. H. L. D. S. (2008). Human resource planning and control for energy industry in libya: Meeting the challenge. Bloom, N., and Reenen, J. V. (2011). Human resource management and productivity. Handbook of labor economics, 4, 1697-1767. Bloom, N., and Van Reenen, J. (2011). Human resource management and productivity. Handbook of labor economics, 4, 1697-1767. Bobko, P. (2001). Correlation and regression: Applications for industrial organisational psychology and management: Sage. Bollen, K. A. (2014). Structural equations with latent variables: John Wiley and Sons. Bordignon, M., Colombo, L., & Galmarini, U. (2003). Fiscal federalism and endogenous lobbies' formation. 267 Boomsma, A., and Hoogland, J. J. (2001). The robustness of LISREL modeling revisited. Structural equation models: Present and future. A Festschrift in honor of Karl Jöreskog, 139-168. Boselie, P., Dietz, G., & Boon, C. (2005). Commonalities and contradictions in HRM and performance research. Human Resource Management Journal, 15(3), 67-94. Boselie, P., Paauwe, J., & Jansen, P. (2001). Human resource management and performance: lessons from the Netherlands. International journal of human resource management, 12(7), 1107-1125. Bourque, L., and Fielder, E. P. (2002). How to conduct telephone surveys (Vol. 4): SAGE Publications, Incorporated. Bowen, D. E., and Ostroff, C. (2004). Understanding HRM–firm performance linkages: The role of the ―strength‖ of the HRM system. Academy of management review, 29(2), 203-221. Boxall, P., and Purcell, J. (2011). Strategy and Human Resource Management: Palgrave Macmillan. Brewster, C., Suutari, V., and Minbaeva, D. B. (2005). HRM practices and MNC knowledge transfer. Personnel review, 34(1), 125-144. Budhwar, P. S., Chand, M., and Katou, A. A. (2007). The impact of HRM practices on organisational performance in the Indian hotel industry. Employee Relations, 29(6), 576-594. Byrne, B. M. (1994). Structural equation modeling with EQS and EQS/Windows: Basic concepts, applications, and programming: Sage. Byrne, B. M. (2013). Structural equation modeling with AMOS: Basic concepts, applications, and programming: Routledge. Cable, D. M., and DeRue, D. S. (2002). The convergent and discriminant validity of subjective fit perceptions. Journal of applied psychology, 87(5), 875. Campbell, J. P., McCloy, R. A., Oppler, S. H., and Sager, C. E. (1993). A theory of performance. Personnel selection in organisations, 3570. Carle, A. C., Jaffee, D., Vaughan, N. W., and Eder, D. (2009). Psychometric properties of three new national survey of student engagement based engagement scales: An item response theory analysis. Research in Higher Education, 50(8), 775-794. 268 Castrogiovanni, G. J, & Kidwell, R. E. (2010). Human resource management practices affecting unit managers in franchise networks. Human Resource Management, 49(2),225-239. Cavallo, K., and Brienza, D. (2006). Emotional competence and leadership excellence at Johnson and Johnson. Europe’s Journal of Psychology, 2(1). Cavana, R., Delahaye, B. L., and Sekeran, U. (2001). Applied business research: Qualitative and quantitative methods: John Wiley and Sons Australia. Chami, R., Al-Darwish, A., and Cevik, S. (2012). Libya Beyond the Revolution: Challenges and Opportunities: INTERNATIONAL MONETARY FUND. Chang, H. H., and Chen, S. W. (2009). Consumer perception of interface quality, security, and loyalty in electronic commerce. Information and Management, 46(7), 411-417. Chau, P. Y., and Hu, P. J. H. (2001). Information technology acceptance by individual professionals: A model comparison approach*. Decision sciences, 32(4), 699-719. Chiu, R. K., Wai-Mei Luk, V., and Li-Ping Tang, T. (2002). Retaining and motivating employees: Compensation preferences in Hong Kong and China.Personnel Review, 31(4), 402-431. Chossudovsky, M. (2011). Operation Libya‖ and the Battle for Oil: Redrawing the Map of Africa. Global Research. Chow, I. H. S. (2005). High performance work systems in Asian companies. Thunderbird International Business Review, 47(5), 575-599. Chudnovsky, D., López, A., and Pupato, G. (2006). Innovation and productivity in developing countries: A study of Argentine manufacturing firms‘ behavior (1992– 2001). Research policy, 35(2), 266-288. Clarke, N. (2004). HRD and the challenges of assessing learning in the workplace. International Journal of Training and Development, 8(2), 140-156. Clotfelter, C. T. (2014). Buying the best: Cost escalation in elite higher education. Princeton University Press Cohen, L. M., and Manion, L. (2011). L. and Morrison, K.(2011) Research Methods in Education: London: Routledge. 269 Collins, C. J., and Clark, K. D. (2003). Strategic human resource practices, top management team social networks, and firm performance: The role of human resource practices in creating organisational competitive advantage. Academy of management Journal, 46(6), 740-751. Conti, G. (2005). Training, productivity and wages in Italy. Labour economics, 12(4), 557-576. Crawley, M. J. (2014). Statistics: an introduction using R: John Wiley and Sons. Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed methods approaches: Sage publications. Cristini, A., Gaj, A., Labory, S., & Leoni, R. (2002). New work practices in Italy. Adoption and performance effects. Bergamo, Dipartimento di Scienze economiche Hyman P. Minsky, Università di Bergamo, febbraio, mimeo. Crook, T. R., Todd, S. Y., Combs, J. G., Woehr, D. J., & Ketchen Jr, D. J. (2011). Does human capital matter? A meta-analysis of the relationship between human capital and firm performance. Journal of applied psychology, 96(3), 443. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334. Cummings, T., and Worley, C. (2014). Organisation development and change: Cengage learning. Cunningham, E. (2008). A practical guide to structural equation modelling using Amos. Melbourne: Statsline. Dar, A. T., Bashir, M., Ghazanfar, F., & Abrar, M. (2014). Mediating role of employee motivation in relationship to post-selection HRM practices and organizational performance. International Review of Management and Marketing, 4(3), 224. Darby, J. A. (2007). Open-ended course evaluations: a response rate problem? Journal of European Industrial Training, 31(5), 402-12. Darity Jr, W. A. (2003). Employment discrimination, segregation, and health. American Journal of Public Health, 93(2), 226-231. Datta, D. K., Guthrie, J. P., and Wright, P. M. (2003). HRM and Firm Productivity: Does Industry Matter? 270 Datta, D. K., Guthrie, J. P., and Wright, P. M. (2005). Human resource management and labor productivity: does industry matter? Academy of management journal, 48(1), 135-145. Daugherty, P. J., Richey, R. G., Roath, A. S., Min, S., Chen, H., Arndt, A. D., and Genchev, S. E. (2006). Is collaboration paying off for firms? Business Horizons, 49(1), 61-70. Davidson, M. C., Timo, N., and Wang, Y. (2010). How much does labour turnover cost? A case study of Australian four-and five-star hotels. International Journal of Contemporary Hospitality Management, 22(4), 451-466. De Grip, A., and Sauermann, J. (2013). The effect of training on productivity: The transfer of on-the-job training from the perspective of economics. Educational Research Review, 8, 28-36. De Vaus, D. A. (2002). Surveys in social research: Psychology Press. Dearden, L., Reed, H., and Van Reenen, J. (2006). The impact of training on productivity and wages: Evidence from British panel data*. Oxford bulletin of economics and statistics, 68(4), 397-421. Delaney, J. T., and Huselid, M. A. (1996). The impact of human resource management practices on perceptions of organisational performance. Academy of management Journal, 39(4), 949-969. Delery, J. E., and Shaw, J. D. (2001a). The strategic management of people in work organisations: Review, synthesis, and extension. Research in personnel and human resources management, 20, 165-197. Delery, J. E., and Shaw, J. D. (2001b). The strategic management of people in work organisations: Review, synthesis, and extension. Denscombe, M. (2008). Communities of practice a research paradigm for the mixed methods approach. Journal of mixed methods research, 2(3), 270-283. Denscombe, M. (2014). The good research guide: for small-scale social research projects. Deshopande, S. P., and Golhar, D. Y. (1994). HRM practices in large and small manufacturing firms: A comparative study. Journal of Small Business Management, 32(2), 49. Dhiman, G. R., and Mohanty, R. (2010). HRM practices, attitudinal outcomes and turnover intent: An empirical study in Indian oil and gas exploration and production sector. South Asian journal of management, 17(4), 74. 271 Dhiman, G. R., and Mohanty, R. (2012). Impact of HRM practices on HR outcomes: a comparative study between two Indian public and private sector oil companies. International Journal of Indian Culture and Business Management, 5(3), 299-320. Dougherty, M. B., and Larson, E. (2005). A Review of Instruments Measuring Nurse‐ Physician Collaboration. Journal of Nursing Administration, 35(5), 244-253. Dreher, G., and Dougherty, T. (2005). Human resourece strategyz. A behavioral perspective for general manager. New Delhi.'T ata: McGraw-Hill. Drezner, Z., Turel, O., and Zerom, D. (2010). A modified Kolmogorov–Smirnov test for normality. Communications in Statistics—Simulation and Computation®, 39(4), 693-704. Duncan, G. J., and Dunifon, R. (2012). Soft-Skills‖ and long-run labor market success. Research in labor economics, 35, 313-339. Eddleston, K. A., Baldridge, D. C., and Veiga, J. F. (2004). Toward modeling the predictors of managerial career success: does gender matter? Journal of Managerial Psychology, 19(4), 360-385. Elliott, R. F. (1991). Labor Economics: a comparative text: McGraw-Hill College. Elizondo, F. (2003). The Effects of Training Content and Motivation on Transfer of Training: Lamar University. Eriksson, T., and Ortega, J. (2006). The adoption of job rotation: Testing the theories. Industrial and Labor Relations Review, 59(4), 653-666. Eskildsen, J. K., & Nussler, M. L. (2000). The managerial drivers of employee satisfaction and loyalty. Total Quality Management, 11(4-6), 581-588. Estrin, S., & Rosevear, A. (1999). Enterprise performance and corporate governance in Ukraine. Journal of Comparative Economics, 27(3), 442-458. Fattouh, B., & Darbouche, H. (2010). North African oil and foreign investment in changing market conditions. Energy Policy, 38(2), 1119-1129. Foster, L., Haltiwanger, J., & Krizan, C. J. (2006). Market selection, reallocation, and restructuring in the US retail trade sector in the 1990s.The Review of Economics and Statistics, 88(4), 748-758. Fallahi, F., Sakineh, S., and Mehin Aslaninia, N. (2010a). Determinants of Labor Productivity in Iran‘s Manufacturing Firms: With emphasis on labor education and training: University Library of Munich, Germany. 272 Fallahi, F., Sakineh, S., and Mehin Aslaninia, N. (2010b). Determinants of Labor Productivity in Iran‘s Manufacturing Firms: With Emphasis on Labor Education and Training. Farhad, F., Hoag, G. E., Shili, L., Robert, J., Carley Peter, Z., 2000. Detection and Remediation of Soil and Aquifer Systems Contaminated with Petroleum Products: an overview, Journal of Petroleum Science and Engineering., p. 26, 169-178. Farnham, D. (2010). Human Resource Management in Context: Strategy, Insights and Solutions. (3 ed.). London. Fay, B. (1996). Contemporary philosophy of social science: A multicultural approach (Vol. 1): Wiley-Blackwell. Fey, C. F., & Björkman, I. (2001). The effect of human resource management practices on MNC subsidiary performance in Russia. Journal of international business studies, 59-75. Field, A. (2013). Discovering statistics using IBM SPSS statistics: Sage. Finegold, D., Levenson, A., & Buren, M. (2005). Access to training and its impact on temporary workers. Human Resource Management Journal, 15(2), 66-85. Flamholtz, E. G., & Aksehirli, Z. (2000). Organizational success and failure:: an empirical test of a holistic model. European Management Journal, 18(5), 488- 498. Fletcher, C. (2001). Performance appraisal and management: the developing research agenda. Journal of Occupational and Organisational Psychology, 74(4), 473-487. Fornell, C., and Larcker, D. F. (1981a). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 39-50. Fornell, C., and Larcker, D. F. (1981b). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of marketing research, 382-388. Furnham, A. (2005). The psychology of behaviour at work: The individual in the organisation: Psychology Press. Ghazzawi, K., Al-Khoury, P., & Saman, J. (2014). The Effect of Implementing Technology in HRM on the Level of Employee Motivation.Human Resource Management Research, 4(2), 33-39. 273 Guthrie, J. P. (2001). High-involvement work practices, turnover, and productivity: Evidence from New Zealand. Academy of management Journal, 44(1), 180-190. Garibaldi, P. (2006). Personnel economics in imperfect labour markets: OUP Oxford. Greer, C. R., Ireland, T. C., & Wingender, J. R. (2001). Contrarian human resource investments and financial performance after economic downturns. Journal of Business Research, 52(3), 249-261. Größler, A., & Zock, A. (2010). Supporting long‐ term workforce planning with a dynamic aging chain model: A case study from the service industry. Human Resource Management, 49(5), 829-848. Gay, B., and Weaver, S. (2011). Theory building and paradigms: A primer on the nuances of theory construction. American International Journal of Contemporary Research, 1(2), 24-32. George, D., and Mallery, M. (2003). Using SPSS for Windows step by step: a simple guide and reference. Boston, MA: Allyn y Bacon.[Links]. Gerbing, D. W., and Anderson, J. C. (1988). An updated paradigm for scale development incorporating unidimensionality and its assessment. Journal of marketing research, 186-192. Glock, C. Y., and Bennett, J. W. (1967). Survey research in the Social Sciences: New York: Russell Sage Foundation. Goleman, D. (2003). What makes a leader. Organisational Influence Processes (Porter, LW, et al. Eds.), New York, ME Sharpe, 229-241. Goleman, D., and Boyatzis, R. (2008). Social intelligence and the biology of leadership. Harvard business review, 86(9), 74-81. Gottschalk, P., and Solli-Sæther, H. (2005). Critical success factors from IT outsourcing theories: an empirical study. Industrial Management and Data Systems, 105(6), 685-702. Groves, M. O. (2005). How important is your personality? Labor market returns to personality for women in the US and UK. Journal of Economic Psychology, 26(6), 827-841. Guest, D. E. (1997). Human resource management and performance: a review and research agenda. International journal of human resource management, 8(3), 263- 276 274 Guest, D. E. (2011). Human resource management and performance: still searching for some answers. Human Resource Management Journal, 21(1), 3-13. Güngör, P. (2011). The relationship between reward management system and employee performance with the mediating role of motivation: A quantitative study on global banks. Procedia-Social and Behavioral Sciences, 24, 1510-1520. Guthrie, J. P. (2001). High-involvement work practices, turnover, and productivity: Evidence from New Zealand. Academy of management Journal, 44(1), 180-190. Hafizi, A., & Giran, A. (2012). Training Motivation at Kolej-Polytech MARA Kuantan. Universiti Utara Malaysia. Hair, J. F., Anderson, R. E., Tatham, R. L., and Black, W. (1998). Multivariate data analysis, 1998. Upper Saddle River. Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., and Tatham, R. L. (2006). Multivariate data analysis (Vol. 6): Pearson Prentice Hall Upper Saddle River, NJ. Hair, J. F., Ringle, C. M., and Sarstedt, M. (2013). Editorial-partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Planning, 46(1-2), 1-12. Hair, J. F., Sarstedt, M., Ringle, C. M., and Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the academy of marketing science, 40(3), 414-433. Hair Jr, J., Black, W., Babin, B., Anderson, R., and Tatham, R. (2010). SEM: An introduction. Multivariate data analysis: A global perspective, 629-686. Hair Jr, J. F., Hult, G. T. M., Ringle, C., and Sarstedt, M. (2013). A primer on partial least squares structural equation modeling (PLS-SEM): Sage Publications. Hagan, C. M., Konopaske, R., Bernardin, H. J., & Tyler, C. L. (2006). Predicting assessment center performance with 360 degree, top down, and customer based competency assessments. Human Resource Management, 45(3), 357-390. Hamed, A. (2009). E-commerce and Economic Development in Libya (Doctoral dissertation, University of Wales). Hank, K. (2011). Societal determinants of productive aging: A multilevel analysis across 11 European countries. European sociological review, 27(4), 526-541. 275 Harrell, F. E. (2001). Regression modeling strategies: Springer Science and Business Media. Hemdi, M. A., & Nasurdin, A. M. (2006). PREDICTING TURNOVER INTENTIONS OF HOTEL EMPLOYEES: The Influence of Employee Development Human Resource Management Practices and Trust in Organization. Gadjah Mada International Journal of Business, 8(1). Hertzog, M. A. (2008). Considerations in determining sample size for pilot studies. Research in Nursing and Health, 31(2), 180-191. Herzberg, F. I. (1966). Work and the nature of man. Hirschheim, R., Klein, H. K., and Lyytinen, K. (1995). Information systems development and data modeling: conceptual and philosophical foundations (Vol. 9): Cambridge University Press. Hochwarter, W. A., Kiewitz, C., Gundlach, M. J., & Stoner, J. (2004). The impact of vocational and social efficacy on job performance and career satisfaction. Journal of Leadership & Organizational Studies, 10(3), 27-40 Hochwarter, W. A., Witt, L., Treadway, D. C., and Ferris, G. R. (2006). The interaction of social skill and organisational support on job performance. Journal of Applied Psychology, 91(2), 482. Hoe, S. L. (2008). Issues and procedures in adopting structural equation modeling technique. Journal of applied quantitative methods, 3(1), 76-83. Holbeche, L. (2009). Aligning human resources and business strategy: Routledge. Holmes-Smith, P., Coote, L., and Cunningham, E. (2006). Structural equation modeling: From the fundamentals to advanced topics. SREAMS, Melbourne. Hom, P. W., & Griffeth, R. W. (1995). Employee turnover. South-Western Pub Hooper, D., Coughlan, J., and Mullen, M. (2008). Structural equation modelling: guidelines for determining model fit. Articles, 2. Hoque, Z. (2000). Just-in-time production, automation, cost allocation practices and importance of cost information: an empirical investigation in New Zealand-based manufacturing organisations. The British Accounting Review, 32(2), 133-159. Hosany, S., Ekinci, Y., and Uysal, M. (2007). Destination image and destination personality. International Journal of Culture, Tourism and Hospitality Research, 1(1), 62-81. 276 Hoyle, R. H. (2014). Handbook of structural equation modeling: Guilford Publications. Hsieh, Y.-C., and Hiang, S.-T. (2004). A study of the impacts of service quality on relationship quality in search-experience-credence services. Quality control and applied statistics, 49(6), 687-688. Huang, T.-C. (2000). Are the human resource practices of effective firms distinctly different from those of poorly performing ones? Evidence from Taiwanese enterprises. International Journal of Human Resource Management, 11(2), 436- 451. Huang, P. A. (2012). The Effect of Human Resource Practices on Firm Performance in Chinese Smes: An Empirical Study in Service Sector. (Phd Phd Thesis), Published Heritage Branch. Hurrell, S. A., Richards, J., and Scholarios, D. (2013). ‗The kids are alert‘: Employed students‘ experiences of and attitudes towards the use of social networking sites in recruitment and employment. Huselid, M. A. (1995). The impact of human resource management practices on turnover, productivity, and corporate financial performance. Academy of management journal, 38(3), 635-672. Huselid, M. A., Becker, B. E., and Beatty, R. W. (2005). The workforce scorecard: Managing human capital to execute strategy: Harvard Business Review Press. Huxham, C., and Vangen, S. (2000). Leadership in the shaping and implementation of collaboration agendas: How things happen in a (not quite) joined-up world. Academy of management Journal, 43(6), 1159-1175. Huxham, C., Vangen, S., Huxham, C., and Eden, C. (2000). The challenge of collaborative governance. Public Management an International Journal of Research and Theory, 2(3), 337-358. Iacobucci, D., and Churchill, G. (2009). Marketing research: methodological foundations: Cengage Learning. Ibraheim Mejerissi. (2009, 26 March ). Explicating Human Resource Management and Organisational Performance: The Libyan Case. Paper presented at the 12th Annual Doctoral Symposium 2009, university Manchester Metropolitan university Ilies, R., and Judge, T. A. (2005). Goal regulation across time: the effects of feedback and affect. Journal of applied psychology, 90(3), 453. 277 Järvelä, S., and Järvenoja, H. (2011). Socially constructed self-regulated learning and motivation regulation in collaborative learning groups. Teachers College Record, 113(2), 350-374. Jarvis, C. B., MacKenzie, S. B., and Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of consumer research, 30(2), 199-218. Jin, B., and Park, N. (2013). Mobile voice communication and loneliness: Cell phone use and the social skills deficit hypothesis. New Media and Society, 15(7), 1094-1111. Johnson, C. R. (2005). Employee Motivation: A Comparison of Tipped and Non-Tipped Hourly Restaurant Employees. University of Central Florida Orlando, Florida. Johnson, D. W., and Johnson, R. T. (2002). Cooperative learning and social interdependence theory Theory and research on small groups (pp. 9-35): Springer. Jordan, P. J., Ashkanasy, N. M., and Härtel, C. E. (2003). The case for emotional intelligence in organisational research. The Academy of Management Review, 195- 197. Jordan, P. J., Ashkanasy, N. M., Härtel, C. E., and Hooper, G. S. (2002). Workgroup emotional intelligence: Scale development and relationship to team process effectiveness and goal focus. Human resource management review, 12(2), 195- 214. Jorge, E. T., Leonardo, E., Sandra, R. E., Maria, B., & Martins, A. (2010). An approach for selecting a theoretical framework for the evaluation of Training programs. Journal of European Industrial Training, 34( 7), 631- 655. Khan, A. M. (2010). Effects of human resource management practices on organizational performance: An empirical study of oil and gas industry in Pakistan. European Journal of Economics, Finance and Administrative Sciences, 24, 157-174. Kalburgi, M. J. (2010). Motivation as a tool for productivity in Public sector unit. Kalfsvel, T. V. (2012). Performance measurement in a decentralized organisation. Kanfer, R., Chen, G., and Pritchard, R. D. (2012). Work motivation: Past, present and future: Routledge. Karia, N., and Asaari, M. H. A. H. (2006). The effects of total quality management practices on employees' work-related attitudes. The TQM Magazine, 18(1), 30-43. 278 Katou, A. A. (2008). Measuring the impact of HRM on organisational performance. Journal of Industrial Engineering and Management, 1(2), 119-142. Katou, A. A., and Budhwar, P. S. (2007). The effect of human resource management policies on organisational performance in Grekhek manufacturing firms. Thunderbird international business review, 49(1), 1-35. Katzell, R. A., and Thompson, D. E. (1990). Work motivation: Theory and practice. American Psychologist, 45(2), 144. Kavanagh, C., and Doyle, E. (2006). Human Capital and Productivity in the Irish Context. Report for the Expert Group on Future Skills Needs. University College Cork, 31. Kee, R., and Schmidt, C. (2000). A comparative analysis of utilizing activity-based costing and the theory of constraints for making product-mix decisions. International Journal of Production Economics, 63(1), 1-17. Kendall, M. G. (1948). Rank correlation methods. Keng Boon, O., Arumugam, V., Samaun Safa, M., and Abu Bakar, N. (2007). HRM and TQM: association with job involvement. Personnel review, 36(6), 939-962. Ketkar, S., & Sett, P. (2009). HR flexibility and firm performance: Analysis of a multi- level causal model. The International Journal of Human Resource Management, 20(5), 1009-1038. Khalid, M. M., Rehman, C. A., & Ilyas, D. (2014). HRM Practices and Employee Performance in Public Sector Organizations in Pakistan: An Empirical study. International Journal of Management Sciences and Business Research, 3(2). Kinyili, J. M., Karanja, K., and Namusonge, G. (2015). Role of remuneration and career advancement practices on the retention of employees in organisations: evidence from research. International Journal of Advanced Research in Management and Social Sciences, 4(7), 254-279. Klein, H. J. (1989). An integrated control theory model of work motivation. Academy of management review, 14(2), 150-172. Klein, J. G., Ettenson, R., and Morris, M. D. (1998). The animosity model of foreign product purchase: An empirical test in the People's Republic of China. The Journal of Marketing, 89-100. Kline, R. (2005). Principles and practice of structural equation modeling. Guilford Press. New York, 59. 279 Kline, R. B. (2011). Principles and practice of structural equation modeling: Guilford press.. Kozlowski, S. W., and Klein, K. J. (2000). A multilevel approach to theory and research in organisations: Contextual, temporal, and emergent processes. Krejcie, R. V., and Morgan, D. W. (1970). Determining sample size for research activities. Educ Psychol Meas. Kurre, J. A., and Andrews, P. S. (2013). What Determines Labor Productivity Differences for Manufacturing Industries Across US Metro Areas? Lacher, W. 2014. ―Libya‘s fractious south and regional instability.‖ Security Assessment in North Africa Dispatch no. 3. Geneva: Small Arms Survey. Lai, E. R. (2011). Collaboration: A literature review: Pearson Research Report. Laka-Mathebula, M. R. (2004). Modelling the relationship between organizational commitment, leadership style, human resources management practices and organizational trust (Doctoral dissertation, UNIVERSITY OF PRETORIA PRETORIA). Latham, G. P. (2012). Work motivation: History, theory, research, and practice: Sage. Latham, S. F., & Braun, M. R. (2008). The performance implications of financial slack during economic recession and recovery: observations from the software industry (2001-2003). Journal of Managerial Issues, 30-50. Lawler, E. E. (2005). Creating high performance organizations. Asia Pacific Journal of Human Resources, 43(1), 10-17. Levesque, L. L. (2005). Opportunistic hiring and employee fit. Human Resource Management, 44(3), 301-317. Ledbetter, A. M. (2009). Measuring online communication attitude: Instrument development and validation. Communication Monographs, 76(4), 463-486. Leenders, R. T. A., Van Engelen, J. M., and Kratzer, J. (2003). Virtuality, communication, and new product team creativity: a social network perspective. Journal of Engineering and Technology Management, 20(1), 69-92. Leitch, S. (2006). Prosperity for All in the Global Economy--World Class Skills: Final Report. The Stationery Office. 280 Lepak, D. P., Liao, H., Chung, Y., and Harden, E. E. (2006). A conceptual review of human resource management systems in strategic human resource management research. Research in personnel and human resources management, 25, 217-271. Li, A., & Butler, A. B. (2004). The effects of participation in goal setting and goal rationales on goal commitment: An exploration of justice mediators. Journal of business and psychology, 19(1), 37-51. Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association, 62(318), 399- 402. Little, T. D. (2013). Longitudinal Structural Equation Modeling: Guilford Press. Locke, E. A., and Latham, G. P. (1990). Work motivation and satisfaction: Light at the end of the tunnel. Psychological science, 1(4), 240-246. Locke, E. A., and Latham, G. P. (2006). New directions in goal-setting theory. Current directions in psychological science, 15(5), 265-268. Lomax, R. G., and Schumacker, R. E. (2012). A beginner's guide to structural equation modeling: Routledge Academic. Lööf, H., Peters, B., and Janz, N. (2004). Innovation and Productivity in German and Swedish Manufacturing Firms: Is there a Common Story? Problems and perspectives in management, 2, 184-204. Lourenço Ubeda, C., and Cesar Almada Santos, F. (2007). Staff development and performance appraisal in a Brazilian research centre. European journal of innovation management, 10(1), 109-125. MacKinnon, D. P. (2008). Introduction to statistical mediation analysis: Routledge. MacKinnon, D. P., and Fairchild, A. J. (2009). Current directions in mediation analysis. Current Directions in Psychological Science, 18(1), 16-20. Macky, K., & Boxall, P. (2007). The relationship between ‗high-performance work practices‘ and employee attitudes: an investigation of additive and interaction effects. The International Journal of Human Resource Management, 18(4), 537- 567. Maher, C. G., Sherrington, C., Herbert, R. D., Moseley, A. M., and Elkins, M. (2003). Reliability of the PEDro scale for rating quality of randomized controlled trials. Physical therapy, 83(8), 713-721. 281 Mahmud, M. B., and Russell, A. (2002). Evidence that the terms of petroleum contracts influence the rate of development of oil fields. OPEC Review, 26(1), 21-44. Malhotra, N. K. (2008). Marketing research: An applied orientation, 5/e: Pearson Education India. Malhotra, N. K., Agarwal, J., and Peterson, M. (1996). Methodological issues in cross- cultural marketing research: A state-of-the-art review. International Marketing Review, 13(5), 7-43. Mallinckrodt, B., Abraham, W. T., Wei, M., and Russell, D. W. (2006). Advances in testing the statistical significance of mediation effects. Journal of Counseling Psychology, 53(3), 372. Mangan, J., Lalwani, C., and Gardner, B. (2004). Combining quantitative and qualitative methodologies in logistics research. International journal of physical distribution and logistics management, 34(7), 565-578. Maneesriwongul, W., & Dixon, J. K. (2004). Instrument translation process: a methods review. Journal of advanced nursing, 48(2), 175-186. Markman, G. D., and Baron, R. A. (2003). Person–entrepreneurship fit: why some people are more successful as entrepreneurs than others. Human resource management review, 13(2), 281-301. Markus, K. A. (2012). Principles and Practice of Structural Equation Modeling by Rex B. Kline. Structural Equation Modeling: A Multidisciplinary Journal, 19(3), 509- 512. Martín‐Alcázar, F., Romero‐Fernández, P. M., and Sánchez‐Gardey, G. (2008). Human Resource Management as a Field of Research*. British Journal of Management, 19(2), 103-119. Masood, T. (2010). Impact of Human Resource Management (HRM) Practices on Organisational Performance: A mediating role of employee performance (Doctoral dissertation, MOHAMMAD ALI JINNAH UNIVERSITY ISLAMABAD). McGuckin, R. H., and Van Ark, B. (2003). Performance 2002: Productivity, Employment, and Income in the World's Economies. 282 McGurk, S. R., Mueser, K. T., and Pascaris, A. (2005). Cognitive training and supported employment for persons with severe mental illness: one-year results from a randomized controlled trial. Schizophrenia bulletin, 31(4), 898-909. Mitchell, M. S., and Ambrose, M. L. (2007). Abusive supervision and workplace deviance and the moderating effects of negative reciprocity beliefs. Journal of applied psychology, 92(4), 1159. Mobbs, P. M., Taib, M., and Wallace, G. J. (2012). The Mineral Industries of the Middle East. Minerals Yearbook: Area Reports International Review 2010 Africa and the Middle East, 10. Moideenkutty, U., Al-Lamki, A., and Sree Rama Murthy, Y. (2011). HRM practices and organisational performance in Oman. Personnel Review, 40(2), 239-251. Moncarz, E., Zhao, J., & Kay, C. (2009). An exploratory study of US lodging properties' organizational practices on employee turnover and retention.International Journal of Contemporary Hospitality Management, 21(4), 437-458. Morgeson, F. P., Reider, M. H., and Campion, M. A. (2005). Selecting individuals in team settings: The importance of social skills, personality characteristics, and teamwork knowledge. Personnel psychology, 58(3), 583-611. Morris, M. R. (2008). A survey of collaborative web search practices. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Moselhi, O., and Khan, Z. (2010). Analysis of labour productivity of formwork operations in building construction. Construction Innovation, 10(3), 286-303. Mtimkulu, D. S., & Naranjee, N. (2014). An Evaluation of the Leadership Styles of Managers and their Impact on Human Capital Factors of Motivation, Performance and Absenteeism of Employees at Selected Hospitals in Eastern Free State, South Africa. Arabian Journal of Business and Management Review (Oman Chapter), 4(2), 47. Muijs, D., Ainscow, M., Chapman, C., & West, M. (2011). Collaboration and networking in education. Springer Science & Business Media. Narteh, B. (2008). Knowledge transfer in developed-developing country interfirm collaborations: a conceptual framework. Journal of knowledge management, 12(1), 78-91. National Oil Corporation. 2005. www.Noclibya.com/Noc-site/bid-round-arabic.htm. Accessed on 30.03.2015 283 Nazim, A., and Ahmad, S. (2013). A Comparison Between Ordinary Least Square (OLS) And Structural Equation Modeling (SEM) Methods In Estimating The Influencial Factors Of 8th Grades Student‘s Mathematics Achievement In Malaysia. International Journal of Scientific and Engineering Research (IJSER) ISSN, 2229- 5518. Needham, D., and Dransfield, R. (1994). Business studies: Nelson Thornes. Niazi, B. R. A. S. (2011). Training and development strategy and its role in organizational performance. Journal of public Administration and Governance, 1(2), 42-57. Nunnally, J. (1978). C.(1978). Psychometric theory: New York: McGraw-Hill. Ogden, T. E., and Goldberg, I. A. (2002). Research proposals: A guide to success: Academic Press. Oke, A. E., Ogunsami, D. R., and Ogunlana, S. (2012). Establishing a common ground for the use of structural equation modelling for construction related research studies. Australasian Journal of Construction Economics and Building, 12(3), 89- 94. OPEC, O. (2011). Annual Statistical Bulletin 2010/2011. Organization of Petroleum Exporting Countries, Vienna, Austria. Osterman, P. (1994). How common is workplace transformation and who adopts it? Industrial and labor relations review, 47(2), 173-188. Ostroff, C., and Bowen, D. E. (2000). Moving HR to a higher level: HR practices and organisational effectiveness. Oussama, S. (2012). Effects of Human Resource Management Practices on Organizational Performance: A Study in ENAMC as a Public Manufacturing Company in Algeria (Doctoral dissertation, Universiti Utara Malaysia). Outlook, A. E. (2013). Energy Information Administration. United States. Parham, D. (2012). Australia's productivity growth slump: Signs of crisis, adjustment or both?. Canberra: Productivity Commission. Palant, J. (2007). SPSS Survival Manual: Glasgow, UK, McGraw-Hill. Pao-Long, C., & Wei-Ling, C. (2002). The effect of human resource management practices on firm performance: Empirical evidence from high-tech firms in Taiwan. International Journal of Management, 19(4), 622. 284 Park, C. H., & Kim, Y. G. (2003). A framework of dynamic CRM: linking marketing with information strategy. Business Process Management Journal,9(5), 652-671. Park, T.-Y., and Shaw, J. D. (2013). Turnover rates and organisational performance: A meta-analysis. Journal of Applied Psychology, 98(2), 268. Patterson, M. G., West, M. A., Lawthom, R., & Nickell, S. (1997). Impact of people management practices on business performance (pp. vii-viii). London: Institute of Personnel and Development. Patterson, M. G., West, M. A., & Wall, T. D. (2004). Integrated manufacturing, empowerment, and company performance. Journal of Organizational Behavior, 25(5), 641-665 Peteraf, M. A., & Barney, J. B. (2003). Unraveling the resourcebased tangle. Managerial and decision economics, 24(4), 309-323. Ployhart, R. E. (2006). Staffing in the 21st century: New challenges and strategic opportunities. Journal of Management, 32(6), 868-897. Preacher, K. J., and Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior research methods, 40(3), 879-891. Quresh, T. M., Akbar, A., Khan, M. A., Sheikh, R. A., & Hijazi, S. T. (2010). Do human resource management practices have an impact on financial performance of banks? African Journal of Business Management, 4(7), 1281. Qureshi M.T., R.I. Mohammad, & H.T. Syed (2007), Impact of human resource management practices on organizational performance in Pakistan, Journal of Business & Policy Research, 3(2), 128-138. Rachmi, A. (2013). The HRM practices of Indonesian medium-sized companies in the textile industry in Java. Rainlall, S. (2004). A review of employee motivation theories and their implications for employee retention within organisations. The journal of American academy of business, 9, 21-26. Ramayah, T., Lee, J. W. C., and Lim, S. (2012). Sustaining the environment through recycling: An empirical study. Journal of environmental management, 102, 141- 147. Randall, D. M., and Gibson, A. M. (1990). Methodology in business ethics research: A review and critical assessment. Journal of Business Ethics, 9(6), 457-471. 285 Rao, T. V. (2014). HRD audit: evaluating the human resource function for business improvement: SAGE Publications India. Reeve, J. (2014). Understanding motivation and emotion: John Wiley and Sons. Richardson, B. J. (2013). Socially responsible investing for sustainability: overcoming its incomplete and conflicting rationales. Transnational Environmental Law, 2(2), 311-338. Richardson, H. A., Vandenberg, R. J., Blum, T. C., and Roman, P. M. (2002). Does Decentralization Make a Difference for the Organisation? An Examination of the Boundary Conditions Circumbscribing Decentralized Decision-Making and Organisational Financial Performance. Journal of Management, 28(2), 217-244. Roets, A., Van Hiel, A., Cornelis, I., and Soetens, B. (2008). Determinants of task performance and invested effort: A need for closure by relative cognitive capacity interaction analysis. Personality and Social Psychology Bulletin. Rompho, B., and Siengthai, S. (2012). Integrated performance measurement system for firm's human capital building. Journal of Intellectual Capital, 13(4), 482-514. Roudi Fahimi, F., and Kent, M. M. (2007). Challenges and Opportunities--the Population of the Middle East and North Africa: Population Reference Bureau. Ruël, H., and Bondarouk, T. (2014). E-HRM research and practice: facing the challenges ahead Handbook of strategic e-Business management (pp. 633-653): Springer. Rytivaara, A., and Kershner, R. (2012). Co-teaching as a context for teachers' professional learning and joint knowledge construction. Teaching and teacher education, 28(7), 999-1008. Sahinidis, A. G., and Bouris, J. (2008). Employee perceived training effectiveness relationship to employee attitudes. Journal of European Industrial Training, 32(1), 63-76. Salem, M. A. (2013). THE RELATIONSHIP BETWEEN ENVIRONMENTAL PRACTICES, CORPORATE ENVIRONMENTAL PERFORMANCE, AND COMPETITIVENESS. Unpublished PhD Thesis, Universiti Utara Malaysia. Samson, D., and Daft, R. L. (2009). Fundamentals of management: Cengage Learning Australia. Sartorius, K., Eitzen, C., and Kamala, P. (2007). The design and implementation of Activity Based Costing (ABC): a South African survey. Meditari Accountancy Research, 15(2), 1-21. 286 Savaneviciene, A., & Stankeviciute, Z. (2015). The models exploring the ―black box‖ between HRM and organizational performance. Engineering Economics, 21(4). Schlomer, G. L., Bauman, S., and Card, N. A. (2010). Best practices for missing data management in counseling psychology. Journal of Counseling Psychology, 57(1), 1. Schuler, R. S., and Jackson, S. E. (2005). A quarter-century review of human resource management in the US: The growth in importance of the international perspective. Management Revue, 11-35. Schuler, R. S., Budhwar, P. S., and Florkowski, G. W. (2002). International human resource management: Review and critique. International Journal of Management Reviews, 4(1), 41-70. Scott, W. R., and Davis, G. F. (2015). Organisations and organizing: Rational, natural and open systems perspectives: Routledge. Sekaran, U. (2006). Research methods for business: A skill building approach: John Wiley and Sons. Sels, L., De Winne, S., Delmotte, J., Maes, J., Faems, D., & Forrier, A. (2006). Linking HRM and small business performance: an examination of the impact of HRM intensity on the productivity and financial performance of small businesses. small business economics, 26(1), 83-101. Squires, A., Aiken, L. H., van den Heede, K., Sermeus, W., Bruyneel, L., Lindqvist, R., ... & Ensio, A. (2013). A systematic survey instrument translation process for multi- country, comparative health workforce studies. International journal of nursing studies, 50(2), 264-273. Shah, R., and Ward, P. T. (2007). Defining and developing measures of lean production. Journal of operations management, 25(4), 785-805. Shuping, Z., Yulong, W., Mingde, Y., Kaleem, I., Chun, L., and Tong, J. (2010). Production and characterization of bio-oil from hydrothermal liquefaction of microalgae< i> Dunaliella tertiolecta cake. Energy, 35(12), 5406-5411. Silverman, D. (2006). Interpreting qualitative data: Methods for analyzing talk, text, and interaction: Sage Publications Ltd. Singh, K. (2004). Impact of HR practices on perceived firm performance in India. Asia Pacific Journal of Human Resources, 42(3), 301-317. 287 Singh, A., Syal, M., Grady, S. C., and Korkmaz, S. (2010). Effects of green buildings on employee health and productivity. American Journal of Public Health, 100(9), 1665-1668. Snape, E., & Redman, T. (2010). HRM practices, organizational citizenship behaviour, and performance: A multi‐level analysis. Journal of Management Studies, 47(7), 1219-1247. Snell, S. A., & Dean, J. W. (1992). Integrated manufacturing and human resource management: A human capital perspective. Academy of Management journal, 35(3), 467-504. Spearman, C. (1904). The proof and measurement of association between two things. American journal of Psychology, 15(1), 72-101. Steers, R. M., Mowday, R. T., and Shapiro, D. L. (2004). Introduction to special topic forum: The future of work motivation theory. The Academy of Management Review, 29(3), 379-387. Storey, D. J. (2004). Exploring the link, among small firms, between management training and firm performance: a comparison between the UK and other OECD countries. The International Journal of Human Resource Management, 15(1), 112-130. Sun, L.-Y., Aryee, S., and Law, K. S. (2007). High-performance human resource practices, citizenship behavior, and organisational performance: A relational perspective. Academy of management Journal, 50(3), 558-577. Sullivan Mort, G., & Weerawardena, J. (2006). Networking capability and international entrepreneurship: How networks function in Australian born global firms. International Marketing Review, 23(5), 549-572. Tabachnick, B. G., and Fidell, L. S. (2001). Using multivariate statistics. Tabachnick, B. G., and Fidell, L. S. (2013). Using multivariate statistics (Vol. 6). Boston: Pearson. Tabassi, A. A., and Bakar, A. A. (2009). Training, motivation, and performance: The case of human resource management in construction projects in Mashhad, Iran. International Journal of Project Management, 27(5), 471-480. Tata, J., & Prasad, S. (2004). Team self-management, organizational structure, and judgments of team effectiveness. Journal of Managerial Issues, 248-265. 288 Tzafrir, S. S. (2005). The relationship between trust, HRM practices and firm performance. The International Journal of Human Resource Management,16(9), 1600-1622. Tan, C. L., and Nasurdin, A. M. (2011). Human resource management practices and organisational innovation: assessing the mediating role of knowledge management effectiveness. Electronic Journal of Knowledge Management, 9(2), 155-167. Tennant, C., Boonkrong, M., & Roberts, P. A. (2002). The design of a training programme measurement model. Journal of European industrial training, 26(5), 230-240. Thang, N. N., Buyens, D., and Leuven, V. (2008). Training, organisational strategy, and firm performance. The Business Review, Cambridge, 11(2), 176-183. Thang, N. N., Quang, T., and Buyens, D. (2010). The relationship between training and firm performance: A literature review. Research and practice in human resource management, 18(1), 28-45. Theriou, G. N., & Chatzoglou, P. D. (2008). Enhancing performance through best HRM practices, organizational learning and knowledge management: A conceptual framework. European Business Review, 20(3), 185-207. Tharenou, P., Saks, A. M., and Moore, C. (2007). A review and critique of research on training and organisational-level outcomes. Human Resource Management Review, 17(3), 251-273. Theriou, G. N., and Chatzoglou, P. D. (2008). Enhancing performance through best HRM practices, organisational learning and knowledge management: A conceptual framework. European Business Review, 20(3), 185-207. Thissen, D., and Wainer, H. (2001). Test scoring: Routledge. Thomas, H. R., Maloney, W. F., Horner, R. M. W., Smith, G. R., Handa, V. K., and Sanders, S. R. (1990). Modeling construction labor productivity. Journal of Construction Engineering and Management, 116(4), 705-726. Thompson, B., and Vacha-Haase, T. (2000). Psychometrics is datametrics: The test is not reliable. Educational and Psychological Measurement, 60(2), 174-195. Thongsennheuang, S. (2012). To Study the Effect of Moderator of Social Skills on the Changing Between Managerial Skills and SME Performance. University of the Thai Chamber of Commerce. Thurow, L. C. (1970). Investment in human capital: Wadsworth Belmont, CA. 289 Tregaskis, O., Heraty, N., & Morley, M. (2001). HRD in multinationals: the global/local mix. Human Resource Management Journal, 11(2), 34-56. Tsang, H. W. (2003). Augmenting vocational outcomes of supported employment with social skills training. Journal of Rehabilitation, 69(3), 25. Tseng, Y.-F., & Lee, T.-Z. (2009). Comparing appropriate decision support of human resource practices on organizational performance with DEA/AHP model. Expert Systems with Applications, 36(3), Uddin, M. J., Luva, R. H., and Hossian, S. M. M. (2013). Impact of organisational culture on employee performance and productivity: A case study of telecommunication sector in Bangladesh. International Journal of Business and Management, 8(2), 63. Ullman, J. B., and Bentler, P. M. (2003). Structural equation modeling: Wiley Online Library. UNDP Report (2003) Arab Human Development Report, United Nations Publications, New York. Van Eerde, W., and Thierry, H. (1996). Vroom's expectancy models and work-related criteria: A meta-analysis. Journal of applied psychology, 81(5), 575. Vaidya, S. (2009). International joint ventures: an integrated framework. Competitiveness Review: An International Business Journal, 19(1), 8-16. Van Thuyet, N., Ogunlana, S. O., and Dey, P. K. (2007). Risk management in oil and gas construction projects in Vietnam. International journal of energy sector management, 1(2), 175-194. Vanhala, M., & Ahteela, R. (2011). The effect of HRM practices on impersonal organizational trust. Management Research Review, 34(8), 869-888. Velasco, M. S. (2012). More than just good grades: candidates‘ perceptions about the skills and attributes employers seek in new graduates. Journal of Business Economics and Management, 13(3), 499-517. Vlachos, I. P. (2009). High-performance workplace practices for Greek companies. EuroMed Journal of Business, 4(1), 21-39. Vroom, V. H. (1964). Work and motivation. 290 Walby, S. (2001). Against epistemological chasms: the science question in feminism revisited. Signs, 26(2), 485-509. Wilk, S. L., & Cappelli, P. (2003). Understanding the determinants of employer use of selection methods. Personnel psychology, 56(1), 103-124. Wald, P. M., & Lang, R. (2008). Approaches and Concepts to Restructuring Human Resources Management Functions. Encyclopedia of Human Resources Information Systems: Challenges in e-HRM: Challenges in e-HRM. Wang, Y.-S., and Huang, T.-C. (2009). The relationship of transformational leadership with group cohesiveness and emotional intelligence. Social Behavior and Personality: an international journal, 37(3), 379-392. Wand, Y., and Weber, R. (1993). On the ontological expressiveness of information systems analysis and design grammars. Information Systems Journal, 3(4), 217- 237. Weerawardena, J., and Mort, G. S. (2006). Investigating social entrepreneurship: A multidimensional model. Journal of world business,41(1), 21-35. Weinberg, S. L., and Abramowitz, S. K. (2008). Statistics using SPSS: An integrative approach: Cambridge University Press. West, M. A., Borrill, C., Dawson, J., Scully, J., Carter, M., Anelay, S., . . . Waring, J. (2002). The link between the management of employees and patient mortality in acute hospitals. International Journal of Human Resource Management, 13(8), 1299-1310. Wiid, J., and Diggines, C. (2010). Marketing research: Juta and Company Ltd. Wilk, S. L., & Cappelli, P. (2003). Understanding the determinants of employer use of selection methods. Personnel psychology, 56(1), 103-124 Wimbush, J. C. (2005). Spotlight on human resource management. Business Horizons, 48(6), 463-467. Wolff, H. G., & Moser, K. (2006). Entwicklung und validierung einer networkingskala. Diagnostica, 52(4), 161-180. Wolff, H.-G., and Kim, S. (2012). The relationship between networking behaviors and the Big Five personality dimensions. Career Development International, 17(1), 43-66. 291 Woodrow, C., and Guest, D. E. (2014). When good HR gets bad results: exploring the challenge of HR implementation in the case of workplace bullying. Human Resource Management Journal, 24(1), 38-56. Wright, P. M., Gardner, T. M., and Moynihan, L. M. (2003). The impact of HR practices on the performance of business units. Human Resource Management Journal, 13(3), 21-36. Wright, P. M., Gardner, T. M., Moynihan, L. M., and Allen, M. R. (2005). The relationship between HR practices and firm performance: Examining causal order. Personnel Psychology, 58(2), 409-446. Wright, P. M., and McMahan, G. C. (1992). Theoretical perspectives for strategic human resource management. Journal of Management, 18(2), 295-320. Wright, P. and Nishii, L. H. (2004), Strategic HRM and organizational behavior: integrating multiple levels of analysis. Paper presented at the international seminar ‗HRM: What‘s Next?‘, Erasmus University Rotterdam, The Netherlands. Yildiz, M. A., and Gomes, E. (2011). Entry Modes And Business Strategies In Global Construction Markets: Turkish Contractors In Libya. Readings Book, 1049. Yin, R. K. (2014). Case study research: Design and methods: Sage publications. York, K. M. (2009). Applied human resource management: Strategic issues and experiential exercises: Sage. Zabojnik, J. (2002). Centralized and decentralized decision making in organisations. Journal of Labor Economics, 20(1), 1-22. Zainudin, A. (2012). Structural equation modeling using AMOS graphic. Shah Alam: Universiti Teknologi MARA Publication Centre (UPENA). Zhu, W., Chew, I. K., and Spangler, W. D. (2005). CEO transformational leadership and organisational outcomes: The mediating role of human–capital-enhancing human resource management. The leadership quarterly, 16(1), 39-52. Zeithmal, V. A., and Bitner, M. J. (2004). Service marketing, McGraw-Hill, New York. Zikmund, W., and Babin, B. (2006). Exploring marketing research: Cengage Learning. Zikmund, W., Babin, B., Carr, J., and Griffin, M. (2012). Business research methods: Cengage Learning. 292 Zott, C., and Huy, Q. N. (2007). How entrepreneurs use symbolic management to acquire resources. Administrative Science Quarterly, 52(1), 70-105. 293 APPENDIXES APPENDIX A: SURVEY QUESTIONNAIRE Dear Participant, I am a PhD. student at the Faculty of Leadership and Management, Universiti Sains Islam Malaysia, conducting a study investigating labor productivity and human resource practices of Libya. The research title is : THE IMPACT OF HUMAN RESOURCE MANAGEMENT (HRM) PRACTICES ON LABOUR PRODUCTIVITY IN LIBYAN NATIONAL OIL CORPORATIONS: THE MEDIATING ROLE OF SOCIAL SKILLS . The study is conducted as a fulfillment to complete the PhD program at Faculty of Leadership and Management, USIM. I would be grateful if you could spend some of your time to answer this questionnaire. Your answers will be only used for educational purpose, and all information will be kept confidential. Your full cooperation will contribute to the successful completion of this research. Your cooperation is therefore very much appreciated. Should you require further clarification, please do not hesitate to contact the researcher at the address shown below. Thank you very much for your valuable time and cooperation. Best Wishes Mohamed Ibrahim Mohamed Abulkasim Ph.D. Candidate Faculty of Leadership and Management, UniversitiSains Islam Malaysia (USIM) Bandar BaruNilai, 71800 Nilai, Negeri Sembilan, Malaysia E-mail: algual85@yahoo.com 294 SECTION 1: DEMOGRAPHIC INFORMATION No. Status Item Option √ 1 Gender A Male B Female 2 Your job status A Top management B Middle management C supervisor D Non-managerial E Others 3 Qualification A Never been to school B Primary school C Preparatory school D Secondary school E University F Others (Please state) 4 Income (Libyan Dinar A Less than 500 B 501-1000 C 1001-1500 1501-2000 D 2001-2500 E 2501 and more 5 Please state your approximate period of your occupied position A Less than 1 year B 1-3 years C 4-5 years D More than 5 years 295 Please respond with a tick (√) to all items in this questionnaire. Kindly rate how strongly you agree or disagree with each of the following statements using your knowledge in information skills according to the given scale. (1 – Strongly Disagree 2 – Disagree 3 – Neutral 4 – Agree 5 – Strongly Agree) SECTION 2 Human Resource Management These sections contain research items on HRM practices in oil companies in Libya and focus on staffing, job training, decentralized decision and employment motivation .The options provided in the boxes are numbered from 1 to 5. Please tick (√) the option that best describes your knowledge about the item. The items‘ response key is as follows: No. Items SD D N A SA 1 Recruitment and selection system followed in our organisation is well defined 1 2 3 4 5 2 In our organisation, line managers and HR managers participate in recruitment and selection 1 2 3 4 5 3 Valid and standardized tests are used in the selection process of employees 1 2 3 4 5 4 Selection system in our organisation selects those having the desired knowledge, skills and attitudes 1 2 3 4 5 5 Our organisation uses comprehensive selection process before rendering a decision 1 2 3 4 5 6 The organisation uses assessment centers for selection 1 2 3 4 5 7 Our organisation uses unbiased test and interviewing techniques for employee 1 2 3 4 5 296 selection 8 Our organisation selects employees without any bias 1 2 3 4 5 9 We have strong merit criteria for employee selection 1 2 3 4 5 10 We use attitude and desire to work in a team and individual as a criterion in employee selection 1 2 3 4 5 11 Our organisation conducts Extensive training programs for Employees 1 2 3 4 5 12 Employees at each job normally go through Training programs every year 1 2 3 4 5 13 Training needs are identified through a formal performance appraisal mechanism 1 2 3 4 5 14 There are formal training programs to teach new employees the skills they needed 1 2 3 4 5 15 Training needs identified are realistic, useful and based on the organisational strategy. 1 2 3 4 5 16 There are formal training evaluation methods to assess the effectiveness of the training 1 2 3 4 5 17 The organisation has a system for calculating the cost and benefit of training 1 2 3 4 5 18 Training has helped reduce employee turnover in our organisation 1 2 3 4 5 19 Training has resulted in higher employee performance in our organisation 1 2 3 4 5 20 Training has resulted in higher productivity and financial returns for the organisation 1 2 3 4 5 21 there can be little action taken until a supervisor approves a decision 1 2 3 4 5 297 22 people who want to make their own decisions would be quickly discouraged 1 2 3 4 5 23 even small matters must be referred to someone higher up for approval 1 2 3 4 5 24 employees must ask their supervisors before doing almost anything 1 2 3 4 5 25 any decisions employees make must have their bosses‘ approval 1 2 3 4 5 26 Compensation offered by our organisation matches the expectancy of employees 1 2 3 4 5 27 In our organisation, salary and other benefits are comparable to the market 1 2 3 4 5 28 In our organisation, compensation is decided on the basis of competence of the employee 1 2 3 4 5 29 In our organisation, profit sharing is used as a mechanism to reward higher performance 1 2 3 4 5 30 Our organisation offers both financial and non-financial rewards without discrimination 1 2 3 4 5 31 compensation plan is revised accordingly with the economic situation 1 2 3 4 5 32 Take home pay is enough for my family and me 1 2 3 4 5 33 My last year's salary raise was better than the previous one 1 2 3 4 5 34 Salary increase in my organisation is primarily based on seniority 1 2 3 4 5 35 The compensation for all employees is directly linked to their performance 1 2 3 4 5 298 SECTION 3 : SOCIAL SKILLS This section contains research items on social skills in oil companies in Libya and focuses on collaboration and networking .The options provided in the boxes are numbered from 1 to 5. 1 = Strongly Disagree, 2 = Disagree, 3=Neutral, 4=Agree, 5=Strongly Agree. Please tick (√) the option that best describes your knowledge about the item. The items‘ response key is as follows: No. Items SD D N A SA 36 I have cooperation among the people at work. 1 2 3 4 5 37 I am in teamwork and group problem solving. 1 2 3 4 5 38 I create the conditions for brainstorming the Strategic issues and actions. 1 2 3 4 5 39 I create credible processes for collaborating. 1 2 3 4 5 40 I use company events to make new Contacts. 1 2 3 4 5 41 I catch up with colleagues from other departments about what they are working on. 1 2 3 4 5 42 I use my contacts with colleagues in other departments in order to get confidential advice in business matters. 1 2 3 4 5 43 I accept invitations to official functions or festivities out of professional interest. 1 2 3 4 5 44 I ask others to give my regards to business acquaintances outside of our company 1 2 3 4 5 45 I exchange professional tips and hints with acquaintances from other organisations 1 2 3 4 5 299 SECTION 4 LABOR PRODUCTIVITY This section contains research items on labor productivity of the oil companies in Libya. The options provided in the boxes are numbered from 1 to 5. Please tick (√) the option that best describes your knowledge about the item. The items‘ response key is as follows: No. Items SD D N A SA 46 Quality and quantity of our employees‘ work output has improved. 1 2 3 4 5 47 Coming up with new ideas is appreciated in the organisation as labor productivity. 1 2 3 4 5 48 Most of the employees achieved organisational goals of last 5 years. 1 2 3 4 5 49 Over all employees targets achievements has improved over the last 5 years. 1 2 3 4 5 50 Employees feel happy to work in teams. 1 2 3 4 5 51 Majority of our employees can work independently and they give high performance. 1 2 3 4 5 52 Employees in our organisation have been enabled to make decisions well. 1 2 3 4 5 53 Employees‘ communication skills have been improved in this organisation. 1 2 3 4 5 54 Employees‘ competencies are in line with the organisational operational and strategic goals. 1 2 3 4 5 This is the end of the questionnaire. Thank you very much for your cooperation. 003 ، ػض٠ضٞ اٌّشبسن فٟ الاعزج١بْ أٔب ؿبٌت دوزٛساح فٟ وٍ١خ اٌم١بدح ٚ الإداسح ، عبِؼخ اٌؼٍَٛ الإعلاِ١خ اٌّبٌ١ض٠خ. ٘زا اٌجؾش ٠زؼٍك .ٚأزبع١خ اٌؼًّ اٌّّبسعخ فٟ ٌ١ج١بثبٌّٛاسد اٌجشش٠خ اثزممارساخ إدارج المىارد الثشزيح على انتاجيح العمل فى المؤسسح الىطنيح :ٚاٌجؾش ثؼٕٛاْ حللنفط الليثيح :دور الىساطح من المهاراخ الاجتماعي عبِؼخ ٠ؼذ ٘زا اٌجؾش ِىّلا ٌّزـٍجبد اٌؾظٛي ػٍٝ دسعخ اٌذوزٛسح فٟ وٍ١خ الإداسح ٚاٌم١بدح فٟ .اٌؼٍَٛ الإعلاِ١خ اٌّبٌ١ض٠خ ٔشعٛ ِٕىُ ثؼغ اٌٛلذ ٌزؼجئخ ٘زا الاعزج١بْ. ٚرؤوذٚا ثؤْ اعبثبرىُ عٛف رغزخذَ ٌلأغشاع اٌؼٍّ١خ .فمؾ، ٚعزىْٛ عش٠خ ٌٍغب٠خ. رؼبٚٔىُ عٛف ٠غًٙ ٌٕب اوّبي اٌجؾش، ٚعٕىْٛ ِّزٕ١ٓ ٌىُ وض١شا .طً ِغ اٌجبؽش ػٍٝ اٌؼٕٛاْ أدٔبٖارا ٌذ٠ىُ أٞ اعزفغبس، ٌـفب لا رزشددٚا فٟ اٌزٛا .ٚشىشا عض٠ًلا ٌىُ ػٍٝ ٚلزىُ اٌضّ١ٓ ٚرؼبٚٔىُ اٌىش٠ُ رمجٍٛا خبٌض اٌزؾب٠ب ِؾّذ اثشا٘١ُ ِؾّذ أثٛ اٌمبعُ وٍ١خ الإداسح ٚاٌم١بدح ؿبٌت دوزٛساح عبِؼخ اٌؼٍَٛ الإعلاِ١خ اٌّبٌ١ض٠خ اٌؼٕٛاْ aisyalaM ,nalibmeS iregeN ,ialiN 00817 ,ialiNuraB radnaB moc.liamg@lauglademahomاٌجش٠ذ الإٌىزشٟٚٔ 103 . : معلىماخ (ديمىغزافيح) سكانيح1قسم √ اختيار فقزج الحالح رقم الجنس 1 روش أ أٔضٝ ب وضح وظيفتك 2 ِذ٠ش اداسح أ ِغبػذ ِذ٠ش ب ِششف جـ غ١ش اداسٞ د آخشْٚ هـ المؤهل العلمي 3 ٌُ أرٍمٝ رؼٍ١ُ ثبٌّذسعخ أ ِذسعخ اثزذائ١خ ب ِذسعخ اػذاد٠خ جـ ِذسعخ صبٔٛ٠خ د عبِؼخ هـ أخشٜ أروش٘ب و 4 الذخل (تالذينار الليثي) 335ألً ِٓ أ 135-3331 ب 3351-1331 جـ 3336-1351 د 3356-1336 هـ ٚص٠بدح 1356 و 5 المّذج يزجى تحذيذ التقزيثيح لتىليك هذا المنصة أل ًّ ِٓ عٕخ أ عٕٛاد 3-1 ب عٕٛاد 5-4 جـ عٕٛاد 5أوضش ِٓ د رم١١ُ ٚ٠شعٝ. الاعزج١بْ ٘زا فٟ اٌؼٕبطش ٌىبفخ) √٠شعٝ ِٕه اٌشد ثٛػغ ػلاِخ ( ِٙبساد فٟ ػٍّه ثبعزخذاَ ٚرٌه اٌزبٌ١خ اٌؼجبساد ِٓ وً ِغ اٌّخبٌفخ أٚ ِٛافمزه ِذٜ ِؼ١ٓ ٌّم١بط ٚفمب اٌّؼٍِٛبد )أٚافك ثشذح - 5ِٛافك - 4ِؾب٠ذ - 3لا أٚافك -2لا أٚافك ثشذح-1( إدارجالمىارد الثشزيح :2 قسم 203 رؾزٛٞ ٘زٖ الألغبَ ػٕبطش اٌجؾٛس ؽٛي ِّبسعبد اداسح اٌّٛاسد اٌجشش٠خ فٟ ششوبد ٚاٌمشاس اٌلاِشوضٞ ٚاٌذافغ إٌفؾ فٟ ٌ١ج١ب ٚاٌزشو١ض ػٍٝ اٌزٛظ١ف، ٚاٌزذس٠ت إٌّٟٙ، . , ٚ٠شعٝ ٚػغ 5اٌٝ 1اٌزٛظ١فٟ. ٚلذ ر ُّ رشل١ُ اٌخ١بساد اٌّزٛفشح فٟ ِشثؼبد ِٓ فزبػ فّ. اٌؼٕظش ٘زا ػٓ ٌّؼٍِٛبره ٚطف أفؼً ٠مّذَ اٌزٞ اٌخ١بس ػٍٝ) √ػلاِخ ( اعزغبثخ اٌؼٕبطش وّب ٠ٍٟ: لا اٌؼٕبطش سلُ: أٚافك ثشّذح لا أٚافك أٚافك أٚافك ِؾب٠ذ ثشّذح خز١بس اٌّٛظف١ٓ اٌّّزجغ ااٌزٛظ١ف ٚٔظبَ 1 فٟ ِٕظّزٕب ٚاػؼ اٌّؼبٌُ 4 3 6 1 ٠شبسن ِذساء اٌزٕف١ز ِٚذساء اٌّٛاسد 6 خز١بس اٌّٛظف١ٓ ااٌجشش٠خ فٟ اٌزٛظ١ف ٚ فٟ ِٕظّزٕب 5 4 3 6 1 رغزخذَ الاخزجبساد اٌظبٌؾخ ٚاٌّّٛؽذح 3 اٌّّٛظف١ٓفٟ ػٍّ١خ اخز١بس 5 4 3 6 1 خز١بس اٌّٛظف١ٓ فٟ ِٕظّزٕب ٠زُ اأصٕبء 4 اخز١بس الأشخبص رٚٞ اٌّؼشفخ ٚاٌّٙبساد اٌشإٜ اٌّشغٛثخ 5 4 3 6 1 رغزخذَ ِٕظّزٕب ػٍّ١خ الاخز١بس اٌشبًِ 5 لجً اطذاس٘ب اٌمشاس 5 4 3 6 1 رغزخذَ ِٕظّزٕب ِشاوض اٌزم١١ُ لاخز١بس 6 اٌّٛظف١ٓ 5 4 3 6 1 خزجبساد غ١ش لارغزخذَ ِٕظّزٕب ا 7 اٌّزؾ١ّضح ٚرمٕ١بد اعشاء اٌّمبثلاد خز١بس اٌّٛظف١ٓلا 5 4 3 6 1 5 4 3 6 1 رخزبس ِٕظّزٕب اٌّٛظف١ٓ ثذْٚ أ ّٞ رؾ١ّض 8 ٌذ٠ٕب ِؼب٠١ش اٌغذاسح اٌمٛ٠خ لاخز١بس 9 اٌّٛظف١ٓ 5 4 3 6 1 ِؼ١بس اخز١بس اٌّٛظف١ٓ ٘ٛ اٌشغجخ فٟ 31 ٌٍؼًّ اٌغّبػٟ اٌؼًّ ٚاٌشإ٠خ ٔفشادٞلاٚا 5 4 3 6 1 رغشٞ ِٕظّزٕب ثشاِظ رذس٠ج١خ ِىضفخ 11 ٌٍّٛظف١ٓ 5 4 3 6 1 303 5 4 3 6 1 ٠ٍزؾك اٌّٛظفْٛ عٕٛ٠ب ثجشاِظ رذسث١خ 61 ٠ز ُّ رؾذ٠ذ الاؽز١بعبد اٌزذس٠ج١خ ِٓ خلاي 31 آٌخ رم١١ُ الأداء اٌشعّٟ 5 4 3 6 1 41 ٕ٘بن ثشاِظ رذس٠ج١خ سعّ١خ ٌزؼٍ١ُ اٌّٛظف١ٓ اٌغذد اٌّٙبساد اٌزٟ ٠ؾزبعْٛ اٌ١ٙب 5 4 3 6 1 الاؽز١بعبد اٌزذس٠ج١خ اٌّؾذدح ٚالؼ١خ 51 ِٚف١ذح ِٚجٕ١خ ػٍٝ الاعزشار١غ١خ اٌزٕظ١ّ١خ 5 4 3 6 1 ٕ٘بن ؿشق رذس٠ت سعّ١خ ٌزم١١ُ فؼبٌ١خ 61 اٌزذس٠ت 5 4 3 6 1 ٌذٜ إٌّظّخ ٔظبَ ٌؾغبة اٌزىبٌ١ف 71 اٌزذس٠تٚالاعزفبدح ِٓ 5 4 3 6 1 اٌزذس٠ت عبػذ فٟ رمٍ١ً دٚساْ اٌّٛظف١ٓ 81 فٟ ِٕظّزٕب 5 4 3 6 1 دٜ اٌزذس٠ت اٌٝ الأداء اٌؼبٌٟ ٌٍّٛظف١ٓ أ 91 فٟ ِٕظّزٕب 5 4 3 6 1 أدٜ اٌزذس٠ت اٌٝ اسرفبع ِغزٜٛ الأزبط 36 ٚاٌؼٛائذ ٌٍّٕظّخ 5 4 3 6 1 الإعشاءاد لا رزُ ؽّزٝ ٠ٛافك ػٍ١ٙب 16 ِششف 5 4 3 6 1 ٠زُ اؽجبؽ اٌمشاسد اٌشخظ١خ ٌٍّٛظف١ٓ 66 ثغشػخ 5 4 3 6 1 رشفغ الأِٛس اٌٝ اٌّغئي اٌؼبٌٟ ٌٍّٛافمخ، 36 ٚاْ وبٔذ طغ١شح 5 4 3 6 1 ٠غت ػٍٝ اٌّٛظف١ٓ اخجبس ِششف١ُٙ لجً 46 اٌم١بَ ثؤ ّٞ ػًّ 5 4 3 6 1 رجٕٝ لشاساد اٌّٛظف١ٓ ػٍٝ ِٛافمخ 56 سإعبئُٙ 5 4 3 6 1 رـبثك اٌزؼٛ٠ؼبد اٌّمّذِخ ِٓ ِٕظّزٕب 66 رٛلؼبد اٌّٛظف١ٓ 5 4 3 6 1 اٌشٚارت ٚاٌّضا٠ب الأخشٜ لبثٍخ ٌٍّمبسٔخ 76 ثّب ٠غشٞ فٟ اٌغٛق 5 4 3 6 1 403 اٌمشاس ؽٛي اٌزؼٛ٠ؼبد فٟ ِٕظّزٕب 86 ػٍٝ أعبط وفبءح اٌّٛظف 5 4 3 6 1 رغزخذَ الأسثبػ فٟ ِٕظّزٕب وآداح ٌّىبفئخ 96 اٌؼبٌٟالأداء 5 4 3 6 1 رمّذَ ِٕظّزٕب ولا ِٓ اٌّىبفآد اٌّبٌ١خ 33 ٚغ١ش اٌّبٌ١خ ثذْٚ رؼّظت 5 4 3 6 1 ٠ز ُّ رؼذ٠ً خ ّـخ اٌزؼٛ٠غ ٚفمب ٌٍٛػغ 13 الإلزظبدٞ 5 4 3 6 1 اٌّشرت اٌّزؾظً ػٍ١ٗ شٙش٠ب ٠ىفٕٟ 63 ٚاعشرٝ 5 4 3 6 1 اٌض٠بدح فٟ سارججٟ ٌٍؼبَ اٌّبػٟ وبٔذ 33 اٌؼبَ اٌزٞ عجمٗأفؼً ِٓ 5 4 3 6 1 رغزٕذ اٌض٠بدح فٟ اٌشٚارت أعبعب ػٍٝ 43 الألذِ١خ فٝ ِٕظّزٕب 5 4 3 6 1 ٠شرجؾ اٌزؼٛ٠غ ٌغّ١غ اٌّٛظف١ٓ ِجبششح 53 ثؤدائُٙ 5 4 3 6 1 :3القسم المهاراخ الاجتماعيح: اٌّٙبساد الاعزّبػ١خ فٟ ششوبد إٌفؾ فٟ ػٕبطش اٌجؾش ؽٛي٠ؾزٛٞ ٘زا اٌمغُ ػٍٝ شح فٟ ِشثؼبد رشل١ُ اٌخ١بساد اٌّزّٛف ر ُّٚلذ . اٌؼًّ اٌغّبػٝض ػٍٝ اٌزؼبْٚ ٚٚ٠شّو ,ٌ١ج١ب ّؼٍِٛبره ٌَ أفؼً ٚطف ) ػٍٝ اٌخ١بس اٌزٞ ٠مّذ√. ٠شعٝ ٚػغ ػلاِخ (5اٌٝ 1ِٓ ّفزبػ اعزغبثخ اٌؼٕبطش وّب ٠ٍٟ:ف. اٌؼٕظشػٓ ٘زا 503 لا اٌؼٕبطش أٚافك ثشّذح لا أٚافك أٚافك أٚافك ِؾب٠ذ ثشّذح 5 4 3 6 1 أرؼبْٚ ِغ صِلائٝ فٟ اٌؼًّ 63 أشزشن دائّب فٟ اٌؼًّ اٌغّبػٟ ٚفٟ 73 ِغّٛػخ ؽ ًّ اٌّشبوً 5 4 3 6 1 أ٘ ّٟء اٌظشٚف ٌزجبدي الأفىبس فٟ الاعشاءاد 83 الاعزشار١غ١خ ٚاٌمؼب٠ب 5 4 3 6 1 اٌزؼبْٚ ٠ُغًٙ اٌؾظٛي ػٍٝ ِغبػذح 93 ا٢خش٠ٓ 5 4 3 6 1 أعزخذَ الأؽذاس فٟ اٌششوخ ٌظٕغ 34 الارظبلاد اٌغذ٠ذح 5 4 3 6 1 أٌزؾك ثشوت اٌضِلاء ِٓ الإداساد الأخشٜ 14 ؽٛي ِب ٠ؼٍّْٛ ػٍ١ٗ 5 4 3 6 1 أعزؼ١ٓ ثضِلائٟ فٟ الألغبَ الأخشٜ 64 أوضش خجشح فٟ ٌٍؾظٛي ػٍٝ ٚعٙبد ٔظش أِٛس اٌؼًّ 5 4 3 6 1 ألجً اٌذػٛاد اٌٝ إٌّبعجبد اٌشعّ١خ أٚ 34 الاؽزفبلاد ٌٍفٛائذ إٌّٙ١خ 5 4 3 6 1 5 4 3 6 1 أسعً رؾ١برٟ ٌّؼبسفٟ ِٓ خبسط ِٕظّزٕب 44 أرجبدي إٌظبئؼ إٌّٙ١خ ٚاٌزٍّ١ؾبد ٚاٌخجشاد 54 ِغ إٌّظّبد الأخشٜ 5 4 3 6 1 :4القسم العمل انتاجيح . ٚلذ فٟ ششوبد إٌفؾ فٟ ٌ١ج١بػٕبطش اٌجؾش ؽٛلأزبع١خ اٌؼًّ ٠ؾزٛٞ ٘زا اٌمغُ ػٍٝ ) ػٍٝ √٠شعٝ ٚػغ ػلاِخ (ٚ . 5اٌٝ 1رشل١ُ اٌخ١بساد اٌّزٛفشح فٟ ِشثؼبد ِٓ ر ُّ ّفزبػ اعزغبثخ اٌؼٕبطش ف. اٌؼٕظشّؼٍِٛبره ػٓ ٘زا ٌَ أفؼً ٚطف اٌخ١بس اٌزٞ ٠مّذ وّب ٠ٍٟ: لا اٌؼٕبطش سلُ: أٚافك ثشّذح لا أٚافك أٚافك أٚافك ِؾب٠ذ ثشّذح 5 4 3 6 1 رؾغٕذ ٔٛػ١خ ٚوّ١خ أزبط ػًّ ِٛظف١ٕب 64 5 4 3 6 1إٌّظّخ ِؾً رمذ٠ش فٟ ٛثؤفىبس عذ٠ذح ٘ الإّر١بْ 74 603 ِضً أزبع١خ اٌؼًّ فٝ ؽمك ِؼظُ اٌّٛظف١ٓ الأ٘ذاف اٌزٕظ١ّ١خ 84 عٕٛاد اٌّبػ١خ.اٌخّظ 5 4 3 6 1 الأغبصاد اٌّغزٙذفخ ِٓ اٌّٛظف١ٓ رؾغٕذ 94 اٌّبػ١خخّغخ ػٍٝ ِذٜ اٌغٕٛاد اٌ 5 4 3 6 1 5 4 3 6 1 اٌؼًّ اٌغّبػٟ ٠غّش اٌّٛظف١ٓ 35 5 4 3 6 1 ٠ؼًّ غبٌج١خ ِٛظف١ٕب ثشىً ِغزمً ٚثؤداء ػبٌٟ 15 ػٍٝ ارخبر اٌمشاساد ٕظّزٕبْ فٟ ِٛٓ اٌؼبٍِرّّى 65 ثشىً ع١ذ 5 4 3 6 1 اٌّٛظف١ٓ فٟ ٌذٜ ِٙبساد الارظبي ذٕرؾّغ 35 ٘زٖ إٌّظّخ. 5 4 3 6 1 وفبءاد اٌّٛظف١ٓ ِغ الأ٘ذاف اٌزشغ١ٍ١خ رزّبشٝ 45 ٚالاعزشار١غ١خ اٌزٕظ١ّ١خ 5 4 3 6 1 شىشا عض٠لا ٌزؼبٚٔىُ 307 APPENDIX B: PROOFREADING CERTIFICATE 308 APPENDIX C: PUBLICATION AND CONFERENCES Mohamed Ibrahim Mohamed "The importance of oil and gas sector for Libya: Current Scenario and future trends", Australian Journal of Basic and Applied Science (forthcoming) Mohamed Ibrahim, Mohamed. ―The over dependency of Libya on oil revenue: Economic vulnerability ―, Australian Journal of Basic and Applied Science (forthcoming). Mohamed Ibrahim Mohamed ―A Review of HRM Practices and Labor Productivity: Evidence from Libyan Oil Companies ―Published by Canadian Center of Science and Education, Scopus Journal Asian Social Science. ―Mohamed Ibrahim Mohamed. Beyond the civil war and revolution: The resilience of Libyan Economy towards the restoration of Macroeconomic indicators‖. 2nd International Conference on Management, Humanity and Economics (ICMHE'2013) August 25-26, 2013 Kuala Lumpur (Malaysia) Mohamed Ibrahim Mohamed The Dynamic Impact of Oil Rent (Per Capita) on Labor Productivity in Libya. International Conference on Education, Economics and Humanities (ICEEH'2014) Jan. 15-16, 2014 Kuala Lumpur (Malaysia) Mohamed Ibrahim Mohamed. Investigating mediating role of social skills between HRM practices and Labor productivity: The case of Libyan National Oil Corporation. International Conference on Islamic Leadership, Humanities, Akidah and Media (iLHAM 15) on 26-28 Oct. 2015 at EPF Learning Centre, Kumpulan Wang Simpanan Pekerja, Persiaran, KWSP, 43000 Kajang, Selangor. 309 APPENDIX D: DESCRIPTIVE STATISTICS Statistics ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8 ST9 ST10 N Valid 339 339 339 339 339 339 339 339 339 339 Missing 0 0 0 0 0 0 0 0 0 0 Mean 3.87 3.88 3.78 3.85 3.91 3.85 3.84 3.93 3.90 3.87 Std. Deviation .831 .883 .867 .839 .710 .776 .796 .856 .842 .790 Minimum 1 1 1 1 2 1 1 1 1 2 Maximum 5 5 5 5 5 5 5 5 5 5 Statistics JT1 JT2 JT3 JT4 JT5 JT6 JT7 JT8 JT9 JT10 N Valid 339 339 339 339 339 339 339 339 339 339 Missing 0 0 0 0 0 0 0 0 0 0 Mean 3.84 3.86 3.88 3.83 3.88 3.82 3.84 3.82 3.82 3.87 Std. Deviation .843 .746 .857 .774 .751 .812 .820 .922 .751 .882 Minimum 1 2 1 2 1 1 1 1 1 1 Maximum 5 5 5 5 5 5 5 5 5 5 Statistics EM1 EM2 EM3 EM4 EM5 EM6 EM7 EM8 EM9 EM10 N Valid 339 339 339 339 339 339 339 339 339 339 Missing 0 0 0 0 0 0 0 0 0 0 Mean 3.85 3.85 3.86 3.81 3.80 3.80 3.87 3.77 3.89 3.86 Std. Deviation .788 .829 .790 .841 .766 .806 .828 .762 .830 .766 Minimum 1 1 1 1 1 1 1 1 1 1 Maximum 5 5 5 5 5 5 5 5 5 5 310 Statistics DC1 DC2 DC3 DC4 DC5 N Valid 339 339 339 339 339 Missing 0 0 0 0 0 Mean 3.94 3.94 3.89 3.88 3.91 Std. Deviation .763 .774 .775 .839 .827 Minimum 1 1 2 1 1 Maximum 5 5 5 5 5 Statistics CO1 CO2 CO3 CO4 N Valid 339 339 339 339 Missing 0 0 0 0 Mean 3.93 3.96 3.84 3.92 Std. Deviation .820 .796 .844 .784 Minimum 2 1 1 1 Maximum 5 5 5 5 Statistics NW1 NW2 NW3 NW4 NW5 NW6 N Valid 339 339 339 339 339 339 Missing 0 0 0 0 0 0 Mean 3.81 3.94 3.88 3.86 3.89 3.95 Std. Deviation .944 .968 .924 .924 .849 .869 Minimum 1 1 1 1 1 1 Maximum 5 5 5 5 5 5 311 Statistics LA1 LA2 LA3 LA4 LA5 LA6 LA7 LA8 LA9 N Valid 339 339 339 339 339 339 339 339 339 Missi ng 0 0 0 0 0 0 0 0 0 Mean 4.06 3.93 3.97 3.93 4.01 3.91 3.88 3.85 3.96 Std. Deviation .895 .827 .863 .813 .799 .857 .942 .855 .861 Minimum 1 1 1 1 2 1 1 1 1 Maximum 5 5 5 5 5 5 5 5 5 Descriptive Statistic Std. Error ST1 Mean 3.87 .045 95% Confidence Interval for Mean Lower Bound 3.78 Upper Bound 3.96 5% Trimmed Mean 3.92 Median 4.00 Variance .691 Std. Deviation .831 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.443 .132 Kurtosis .033 .264 ST2 Mean 3.88 .048 95% Confidence Interval for Mean Lower Bound 3.79 Upper Bound 3.98 5% Trimmed Mean 3.93 Median 4.00 Variance .779 Std. Deviation .883 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.676 .132 Kurtosis .270 .264 312 ST3 Mean 3.78 .047 95% Confidence Interval for Mean Lower Bound 3.69 Upper Bound 3.87 5% Trimmed Mean 3.82 Median 4.00 Variance .751 Std. Deviation .867 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.468 .132 Kurtosis .045 .264 ST4 Mean 3.85 .046 95% Confidence Interval for Mean Lower Bound 3.76 Upper Bound 3.94 5% Trimmed Mean 3.90 Median 4.00 Variance .704 Std. Deviation .839 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.731 .132 Kurtosis .781 .264 ST5 Mean 3.91 .039 95% Confidence Interval for Mean Lower Bound 3.83 Upper Bound 3.98 5% Trimmed Mean 3.94 Median 4.00 Variance .503 Std. Deviation .710 Minimum 2 Maximum 5 Range 3 Interquartile Range 0 Skewness -.467 .132 Kurtosis .394 .264 ST6 Mean 3.85 .042 95% Confidence Interval for Mean Lower Bound 3.77 Upper Bound 3.93 5% Trimmed Mean 3.89 Median 4.00 Variance .602 Std. Deviation .776 Minimum 1 Maximum 5 313 Range 4 Interquartile Range 0 Skewness -.842 .132 Kurtosis 1.132 .264 ST7 Mean 3.84 .043 95% Confidence Interval for Mean Lower Bound 3.75 Upper Bound 3.92 5% Trimmed Mean 3.89 Median 4.00 Variance .633 Std. Deviation .796 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.905 .132 Kurtosis 1.608 .264 ST8 Mean 3.93 .046 95% Confidence Interval for Mean Lower Bound 3.84 Upper Bound 4.02 5% Trimmed Mean 3.99 Median 4.00 Variance .732 Std. Deviation .856 Minimum 1 Maximum 5 Range 4 Interquartile Range 2 Skewness -.582 .132 Kurtosis .238 .264 ST9 Mean 3.90 .046 95% Confidence Interval for Mean Lower Bound 3.81 Upper Bound 3.99 5% Trimmed Mean 3.94 Median 4.00 Variance .708 Std. Deviation .842 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.462 .132 Kurtosis -.016 .264 ST10 Mean 3.87 .043 95% Confidence Interval for Mean Lower Bound 3.78 Upper Bound 3.95 5% Trimmed Mean 3.91 Median 4.00 314 Variance .624 Std. Deviation .790 Minimum 2 Maximum 5 Range 3 Interquartile Range 1 Skewness -.447 .132 Kurtosis -.066 .264 JT1 Mean 3.84 .046 95% Confidence Interval for Mean Lower Bound 3.75 Upper Bound 3.93 5% Trimmed Mean 3.88 Median 4.00 Variance .710 Std. Deviation .843 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.401 .132 Kurtosis -.075 .264 JT2 Mean 3.86 .040 95% Confidence Interval for Mean Lower Bound 3.78 Upper Bound 3.94 5% Trimmed Mean 3.88 Median 4.00 Variance .556 Std. Deviation .746 Minimum 2 Maximum 5 Range 3 Interquartile Range 1 Skewness -.276 .132 Kurtosis -.172 .264 JT3 Mean 3.88 .047 95% Confidence Interval for Mean Lower Bound 3.79 Upper Bound 3.97 5% Trimmed Mean 3.93 Median 4.00 Variance .734 Std. Deviation .857 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.561 .132 Kurtosis .227 .264 JT4 Mean 3.83 .042 315 95% Confidence Interval for Mean Lower Bound 3.75 Upper Bound 3.92 5% Trimmed Mean 3.87 Median 4.00 Variance .600 Std. Deviation .774 Minimum 2 Maximum 5 Range 3 Interquartile Range 1 Skewness -.320 .132 Kurtosis -.202 .264 JT5 Mean 3.88 .041 95% Confidence Interval for Mean Lower Bound 3.80 Upper Bound 3.97 5% Trimmed Mean 3.91 Median 4.00 Variance .564 Std. Deviation .751 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.399 .132 Kurtosis .250 .264 JT6 Mean 3.82 .044 95% Confidence Interval for Mean Lower Bound 3.73 Upper Bound 3.90 5% Trimmed Mean 3.86 Median 4.00 Variance .659 Std. Deviation .812 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.455 .132 Kurtosis .201 .264 JT7 Mean 3.84 .045 95% Confidence Interval for Mean Lower Bound 3.75 Upper Bound 3.93 5% Trimmed Mean 3.89 Median 4.00 Variance .673 Std. Deviation .820 Minimum 1 Maximum 5 316 Range 4 Interquartile Range 1 Skewness -.571 .132 Kurtosis .338 .264 JT8 Mean 3.82 .050 95% Confidence Interval for Mean Lower Bound 3.72 Upper Bound 3.92 5% Trimmed Mean 3.88 Median 4.00 Variance .850 Std. Deviation .922 Minimum 1 Maximum 5 Range 4 Interquartile Range 2 Skewness -.461 .132 Kurtosis -.071 .264 JT9 Mean 3.82 .041 95% Confidence Interval for Mean Lower Bound 3.74 Upper Bound 3.90 5% Trimmed Mean 3.84 Median 4.00 Variance .564 Std. Deviation .751 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.445 .132 Kurtosis .580 .264 JT10 Mean 3.87 .048 95% Confidence Interval for Mean Lower Bound 3.77 Upper Bound 3.96 5% Trimmed Mean 3.91 Median 4.00 Variance .778 Std. Deviation .882 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.570 .132 Kurtosis -.027 .264 EM1 Mean 3.85 .043 95% Confidence Interval for Mean Lower Bound 3.76 Upper Bound 3.93 5% Trimmed Mean 3.89 Median 4.00 317 Variance .621 Std. Deviation .788 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.560 .132 Kurtosis .340 .264 EM2 Mean 3.85 .045 95% Confidence Interval for Mean Lower Bound 3.76 Upper Bound 3.94 5% Trimmed Mean 3.90 Median 4.00 Variance .686 Std. Deviation .829 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.743 .132 Kurtosis .884 .264 EM3 Mean 3.86 .043 95% Confidence Interval for Mean Lower Bound 3.77 Upper Bound 3.94 5% Trimmed Mean 3.91 Median 4.00 Variance .625 Std. Deviation .790 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.683 .132 Kurtosis .924 .264 EM4 Mean 3.81 .046 95% Confidence Interval for Mean Lower Bound 3.72 Upper Bound 3.90 5% Trimmed Mean 3.87 Median 4.00 Variance .708 Std. Deviation .841 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.836 .132 Kurtosis 1.327 .264 EM5 Mean 3.80 .042 318 95% Confidence Interval for Mean Lower Bound 3.72 Upper Bound 3.88 5% Trimmed Mean 3.85 Median 4.00 Variance .587 Std. Deviation .766 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -1.032 .132 Kurtosis 2.031 .264 EM6 Mean 3.80 .044 95% Confidence Interval for Mean Lower Bound 3.72 Upper Bound 3.89 5% Trimmed Mean 3.85 Median 4.00 Variance .650 Std. Deviation .806 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.648 .132 Kurtosis .698 .264 EM7 Mean 3.87 .045 95% Confidence Interval for Mean Lower Bound 3.78 Upper Bound 3.96 5% Trimmed Mean 3.92 Median 4.00 Variance .685 Std. Deviation .828 Minimum 1 Maximum 5 Range 4 Interquartile Range 0 Skewness -.799 .132 Kurtosis .858 .264 EM8 Mean 3.77 .041 95% Confidence Interval for Mean Lower Bound 3.69 Upper Bound 3.85 5% Trimmed Mean 3.81 Median 4.00 Variance .580 Std. Deviation .762 Minimum 1 Maximum 5 319 Range 4 Interquartile Range 1 Skewness -.718 .132 Kurtosis 1.097 .264 EM9 Mean 3.89 .045 95% Confidence Interval for Mean Lower Bound 3.80 Upper Bound 3.98 5% Trimmed Mean 3.94 Median 4.00 Variance .689 Std. Deviation .830 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.449 .132 Kurtosis -.119 .264 EM10 Mean 3.86 .042 95% Confidence Interval for Mean Lower Bound 3.78 Upper Bound 3.94 5% Trimmed Mean 3.90 Median 4.00 Variance .587 Std. Deviation .766 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.592 .132 Kurtosis .749 .264 DC1 Mean 3.94 .041 95% Confidence Interval for Mean Lower Bound 3.85 Upper Bound 4.02 5% Trimmed Mean 3.98 Median 4.00 Variance .582 Std. Deviation .763 Minimum 1 Maximum 5 Range 4 Interquartile Range 0 Skewness -.816 .132 Kurtosis 1.509 .264 DC2 Mean 3.94 .042 95% Confidence Interval for Mean Lower Bound 3.85 Upper Bound 4.02 5% Trimmed Mean 3.98 Median 4.00 320 Variance .599 Std. Deviation .774 Minimum 1 Maximum 5 Range 4 Interquartile Range 0 Skewness -.657 .132 Kurtosis .832 .264 DC3 Mean 3.89 .042 95% Confidence Interval for Mean Lower Bound 3.81 Upper Bound 3.97 5% Trimmed Mean 3.93 Median 4.00 Variance .600 Std. Deviation .775 Minimum 2 Maximum 5 Range 3 Interquartile Range 0 Skewness -.538 .132 Kurtosis .178 .264 DC4 Mean 3.88 .046 95% Confidence Interval for Mean Lower Bound 3.79 Upper Bound 3.97 5% Trimmed Mean 3.92 Median 4.00 Variance .704 Std. Deviation .839 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.524 .132 Kurtosis -.017 .264 DC5 Mean 3.91 .045 95% Confidence Interval for Mean Lower Bound 3.82 Upper Bound 3.99 5% Trimmed Mean 3.96 Median 4.00 Variance .683 Std. Deviation .827 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.581 .132 Kurtosis .301 .264 CO1 Mean 3.93 .045 321 95% Confidence Interval for Mean Lower Bound 3.84 Upper Bound 4.01 5% Trimmed Mean 3.97 Median 4.00 Variance .672 Std. Deviation .820 Minimum 2 Maximum 5 Range 3 Interquartile Range 1 Skewness -.479 .132 Kurtosis -.203 .264 CO2 Mean 3.96 .043 95% Confidence Interval for Mean Lower Bound 3.87 Upper Bound 4.04 5% Trimmed Mean 4.01 Median 4.00 Variance .634 Std. Deviation .796 Minimum 1 Maximum 5 Range 4 Interquartile Range 0 Skewness -.734 .132 Kurtosis .826 .264 CO3 Mean 3.84 .046 95% Confidence Interval for Mean Lower Bound 3.75 Upper Bound 3.93 5% Trimmed Mean 3.89 Median 4.00 Variance .712 Std. Deviation .844 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.469 .132 Kurtosis .169 .264 CO4 Mean 3.92 .043 95% Confidence Interval for Mean Lower Bound 3.83 Upper Bound 4.00 5% Trimmed Mean 3.97 Median 4.00 Variance .614 Std. Deviation .784 Minimum 1 Maximum 5 322 Range 4 Interquartile Range 0 Skewness -.929 .132 Kurtosis 1.534 .264 NW1 Mean 3.81 .051 95% Confidence Interval for Mean Lower Bound 3.71 Upper Bound 3.92 5% Trimmed Mean 3.86 Median 4.00 Variance .891 Std. Deviation .944 Minimum 1 Maximum 5 Range 4 Interquartile Range 2 Skewness -.449 .132 Kurtosis -.389 .264 NW2 Mean 3.94 .053 95% Confidence Interval for Mean Lower Bound 3.84 Upper Bound 4.04 5% Trimmed Mean 4.01 Median 4.00 Variance .937 Std. Deviation .968 Minimum 1 Maximum 5 Range 4 Interquartile Range 2 Skewness -.649 .132 Kurtosis -.104 .264 NW3 Mean 3.88 .050 95% Confidence Interval for Mean Lower Bound 3.78 Upper Bound 3.97 5% Trimmed Mean 3.93 Median 4.00 Variance .854 Std. Deviation .924 Minimum 1 Maximum 5 Range 4 Interquartile Range 2 Skewness -.452 .132 Kurtosis -.338 .264 NW4 Mean 3.86 .050 95% Confidence Interval for Mean Lower Bound 3.76 Upper Bound 3.96 5% Trimmed Mean 3.91 Median 4.00 323 Variance .854 Std. Deviation .924 Minimum 1 Maximum 5 Range 4 Interquartile Range 2 Skewness -.627 .132 Kurtosis .055 .264 NW5 Mean 3.89 .046 95% Confidence Interval for Mean Lower Bound 3.80 Upper Bound 3.98 5% Trimmed Mean 3.95 Median 4.00 Variance .721 Std. Deviation .849 Minimum 1 Maximum 5 Range 4 Interquartile Range 0 Skewness -.950 .132 Kurtosis 1.548 .264 NW6 Mean 3.95 .047 95% Confidence Interval for Mean Lower Bound 3.86 Upper Bound 4.05 5% Trimmed Mean 4.01 Median 4.00 Variance .755 Std. Deviation .869 Minimum 1 Maximum 5 Range 4 Interquartile Range 2 Skewness -.670 .132 Kurtosis .441 .264 LA1 Mean 4.06 .049 95% Confidence Interval for Mean Lower Bound 3.97 Upper Bound 4.16 5% Trimmed Mean 4.14 Median 4.00 Variance .801 Std. Deviation .895 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.776 .132 Kurtosis .252 .264 LA2 Mean 3.93 .045 324 95% Confidence Interval for Mean Lower Bound 3.84 Upper Bound 4.01 5% Trimmed Mean 3.96 Median 4.00 Variance .684 Std. Deviation .827 Minimum 1 Maximum 5 Range 4 Interquartile Range 2 Skewness -.430 .132 Kurtosis -.031 .264 LA3 Mean 3.97 .047 95% Confidence Interval for Mean Lower Bound 3.88 Upper Bound 4.06 5% Trimmed Mean 4.04 Median 4.00 Variance .745 Std. Deviation .863 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.916 .132 Kurtosis 1.140 .264 LA4 Mean 3.93 .044 95% Confidence Interval for Mean Lower Bound 3.84 Upper Bound 4.01 5% Trimmed Mean 3.97 Median 4.00 Variance .660 Std. Deviation .813 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.630 .132 Kurtosis .650 .264 LA5 Mean 4.01 .043 95% Confidence Interval for Mean Lower Bound 3.92 Upper Bound 4.09 5% Trimmed Mean 4.06 Median 4.00 Variance .639 Std. Deviation .799 Minimum 2 Maximum 5 325 Range 3 Interquartile Range 1 Skewness -.535 .132 Kurtosis -.091 .264 LA6 Mean 3.91 .047 95% Confidence Interval for Mean Lower Bound 3.82 Upper Bound 4.00 5% Trimmed Mean 3.97 Median 4.00 Variance .734 Std. Deviation .857 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.845 .132 Kurtosis 1.158 .264 LA7 Mean 3.88 .051 95% Confidence Interval for Mean Lower Bound 3.78 Upper Bound 3.98 5% Trimmed Mean 3.95 Median 4.00 Variance .888 Std. Deviation .942 Minimum 1 Maximum 5 Range 4 Interquartile Range 2 Skewness -.909 .132 Kurtosis .867 .264 LA8 Mean 3.85 .046 95% Confidence Interval for Mean Lower Bound 3.76 Upper Bound 3.94 5% Trimmed Mean 3.91 Median 4.00 Variance .732 Std. Deviation .855 Minimum 1 Maximum 5 Range 4 Interquartile Range 1 Skewness -.904 .132 Kurtosis 1.353 .264 LA9 Mean 3.96 .047 95% Confidence Interval for Mean Lower Bound 3.86 Upper Bound 4.05 5% Trimmed Mean 4.02 326 Median 4.00 Variance .741 Std. Deviation .861 Minimum 1 Maximum 5 Range 4 Interquartile Range 2 Skewness -.699 .132 Kurtosis .561 .264 APPENDIX E: STRUCTURAL EQUATION MODELLING RESULTS MEASUREMENT MODEL ANALYSIS Regression Weights: (Group number 1 - Default model) Estimate S.E. C.R. P Label ST1 <--- STAFF 1.000 ST2 <--- STAFF 1.031 .079 13.015 *** ST5 <--- STAFF .806 .064 12.632 *** ST6 <--- STAFF .917 .070 13.180 *** ST7 <--- STAFF .961 .071 13.474 *** ST8 <--- STAFF .990 .077 12.890 *** ST9 <--- STAFF .956 .076 12.636 *** JT1 <--- JOB_TRAIN 1.000 JT2 <--- JOB_TRAIN .878 .069 12.808 *** 327 Estimate S.E. C.R. P Label JT3 <--- JOB_TRAIN 1.057 .079 13.426 *** JT5 <--- JOB_TRAIN .868 .069 12.564 *** JT7 <--- JOB_TRAIN .951 .075 12.607 *** JT8 <--- JOB_TRAIN 1.073 .085 12.652 *** JT9 <--- JOB_TRAIN .852 .069 12.330 *** DC1 <--- DECENT 1.000 DC2 <--- DECENT 1.085 .089 12.195 *** DC3 <--- DECENT 1.085 .089 12.188 *** DC4 <--- DECENT 1.152 .096 11.982 *** DC5 <--- DECENT 1.036 .094 11.047 *** EM1 <--- EMPLOY 1.000 EM2 <--- EMPLOY .979 .072 13.575 *** EM3 <--- EMPLOY .831 .070 11.893 *** EM4 <--- EMPLOY .980 .073 13.357 *** EM5 <--- EMPLOY .869 .067 12.954 *** EM6 <--- EMPLOY .978 .070 13.999 *** EM7 <--- EMPLOY .974 .072 13.517 *** EM8 <--- EMPLOY .915 .066 13.840 *** EM9 <--- EMPLOY 1.030 .072 14.367 *** EM10 <--- EMPLOY .917 .067 13.779 *** 328 Estimate S.E. C.R. P Label CO1 <--- COLLAB 1.000 CO2 <--- COLLAB .905 .066 13.620 *** CO3 <--- COLLAB .924 .071 13.059 *** CO4 <--- COLLAB .900 .065 13.763 *** NW1 <--- NETWORK 1.000 NW2 <--- NETWORK 1.005 .073 13.785 *** NW3 <--- NETWORK .947 .070 13.585 *** NW4 <--- NETWORK 1.035 .069 15.010 *** NW5 <--- NETWORK .895 .064 14.023 *** NW6 <--- NETWORK 1.006 .065 15.560 *** LA1 <--- LABOR 1.000 LA2 <--- LABOR .844 .061 13.859 *** LA3 <--- LABOR .890 .063 14.040 *** LA4 <--- LABOR .853 .059 14.341 *** LA5 <--- LABOR .881 .058 15.227 *** LA6 <--- LABOR .883 .063 14.019 *** LA7 <--- LABOR .889 .070 12.632 *** LA8 <--- LABOR .884 .063 14.073 *** LA9 <--- LABOR .828 .064 12.919 *** 329 Standardized Regression Weights: (Group number 1 - Default model) Estimate ST1 <--- STAFF .746 ST2 <--- STAFF .724 ST5 <--- STAFF .704 ST6 <--- STAFF .733 ST7 <--- STAFF .748 ST8 <--- STAFF .717 ST9 <--- STAFF .704 JT1 <--- JOB_TRAIN .730 JT2 <--- JOB_TRAIN .725 JT3 <--- JOB_TRAIN .759 JT5 <--- JOB_TRAIN .711 JT7 <--- JOB_TRAIN .714 JT8 <--- JOB_TRAIN .716 JT9 <--- JOB_TRAIN .698 DC1 <--- DECENT .703 DC2 <--- DECENT .751 DC3 <--- DECENT .750 DC4 <--- DECENT .736 DC5 <--- DECENT .672 330 Estimate EM1 <--- EMPLOY .769 EM2 <--- EMPLOY .716 EM3 <--- EMPLOY .637 EM4 <--- EMPLOY .706 EM5 <--- EMPLOY .688 EM6 <--- EMPLOY .735 EM7 <--- EMPLOY .713 EM8 <--- EMPLOY .728 EM9 <--- EMPLOY .752 EM10 <--- EMPLOY .725 CO1 <--- COLLAB .787 CO2 <--- COLLAB .733 CO3 <--- COLLAB .707 CO4 <--- COLLAB .740 NW1 <--- NETWORK .755 NW2 <--- NETWORK .740 NW3 <--- NETWORK .731 NW4 <--- NETWORK .799 NW5 <--- NETWORK .752 NW6 <--- NETWORK .825 331 Estimate LA1 <--- LABOR .782 LA2 <--- LABOR .714 LA3 <--- LABOR .721 LA4 <--- LABOR .734 LA5 <--- LABOR .771 LA6 <--- LABOR .721 LA7 <--- LABOR .660 LA8 <--- LABOR .723 LA9 <--- LABOR .673 Covariances: (Group number 1 - Default model) Estimate S.E. C.R. P Label STAFF <--> JOB_TRAIN .175 .028 6.248 *** JOB_TRAIN <--> DECENT .126 .024 5.296 *** JOB_TRAIN <--> EMPLOY .097 .024 4.052 *** JOB_TRAIN <--> COLLAB .235 .032 7.359 *** JOB_TRAIN <--> NETWORK .274 .036 7.631 *** JOB_TRAIN <--> LABOR .272 .035 7.802 *** STAFF <--> DECENT .112 .023 4.841 *** 332 Estimate S.E. C.R. P Label STAFF <--> EMPLOY .108 .024 4.423 *** STAFF <--> COLLAB .208 .031 6.812 *** STAFF <--> LABOR .196 .031 6.336 *** DECENT <--> EMPLOY .064 .021 3.084 .002 DECENT <--> COLLAB .188 .028 6.793 *** DECENT <--> NETWORK .170 .028 6.002 *** DECENT <--> LABOR .208 .030 7.034 *** EMPLOY <--> COLLAB .130 .026 4.924 *** EMPLOY <--> NETWORK .138 .028 4.874 *** EMPLOY <--> LABOR .117 .027 4.358 *** COLLAB <--> NETWORK .301 .038 7.951 *** COLLAB <--> LABOR .364 .040 9.053 *** STAFF <--> NETWORK .205 .032 6.388 *** NETWORK <--> LABOR .378 .043 8.728 *** Correlations: (Group number 1 - Default model) Estimate STAFF <--> JOB_TRAIN .461 JOB_TRAIN <--> DECENT .382 333 Estimate JOB_TRAIN <--> EMPLOY .262 JOB_TRAIN <--> COLLAB .593 JOB_TRAIN <--> NETWORK .625 JOB_TRAIN <--> LABOR .634 STAFF <--> DECENT .339 STAFF <--> EMPLOY .288 STAFF <--> COLLAB .521 STAFF <--> LABOR .453 DECENT <--> EMPLOY .198 DECENT <--> COLLAB .546 DECENT <--> NETWORK .446 DECENT <--> LABOR .557 EMPLOY <--> COLLAB .334 EMPLOY <--> NETWORK .320 EMPLOY <--> LABOR .278 COLLAB <--> NETWORK .656 COLLAB <--> LABOR .810 STAFF <--> NETWORK .466 NETWORK <--> LABOR .760 334 Variances: (Group number 1 - Default model) Estimate S.E. C.R. P Label STAFF .383 .050 7.701 *** JOB_TRAIN .378 .050 7.497 *** DECENT .286 .041 6.944 *** EMPLOY .366 .045 8.156 *** COLLAB .415 .051 8.207 *** NETWORK .507 .064 7.930 *** LABOR .488 .058 8.393 *** e1 .306 .028 11.005 *** e2 .370 .033 11.247 *** e3 .253 .022 11.439 *** e4 .278 .025 11.155 *** e5 .278 .025 10.974 *** e6 .354 .031 11.313 *** 335 Estimate S.E. C.R. P Label e7 .356 .031 11.438 *** e8 .330 .029 11.240 *** e9 .263 .023 11.296 *** e10 .310 .028 10.901 *** e11 .278 .024 11.425 *** e12 .329 .029 11.403 *** e13 .413 .036 11.380 *** e14 .288 .025 11.537 *** e15 .293 .027 10.854 *** e16 .261 .026 10.144 *** e17 .262 .026 10.154 *** e18 .322 .031 10.399 *** e19 .374 .033 11.198 *** e20 .253 .022 11.277 *** e21 .333 .028 11.747 *** e22 .370 .030 12.187 *** e23 .354 .030 11.817 *** e24 .309 .026 11.934 *** e25 .298 .026 11.598 *** e26 .335 .028 11.766 *** 336 Estimate S.E. C.R. P Label e27 .272 .023 11.656 *** e28 .299 .026 11.450 *** e29 .277 .024 11.678 *** e30 .255 .026 9.876 *** e31 .292 .027 10.782 *** e32 .356 .032 11.107 *** e33 .277 .026 10.687 *** e34 .382 .034 11.312 *** e35 .422 .037 11.459 *** e36 .397 .034 11.546 *** e37 .308 .029 10.749 *** e38 .313 .028 11.347 *** e39 .240 .023 10.276 *** e40 .311 .027 11.362 *** e41 .335 .028 11.920 *** e42 .356 .030 11.870 *** e43 .303 .026 11.782 *** e44 .258 .023 11.472 *** e45 .352 .030 11.876 *** e46 .500 .041 12.198 *** 337 Estimate S.E. C.R. P Label e47 .348 .029 11.861 *** e48 .404 .033 12.141 *** $ 337 FINAL RE-SPECIFIED MODEL RESULTS Regression Weights: (Group number 1 - Default model) Estimate S.E. C.R. P COLLABO <--- JOB_TRAIN .386 .067 5.782 *** COLLABO <--- DECENTR .371 .073 5.081 *** COLLABO <--- EMPLOY_MOTIVATE .126 .055 2.309 .021 NETWORK <--- DECENTR .267 .076 3.537 *** NETWORK <--- EMPLOY_MOTIVATE .147 .059 2.487 .013 COLLABO <--- STAFF .226 .062 3.649 *** NETWORK <--- JOB_TRAIN .532 .076 6.988 *** NETWORK <--- STAFF .180 .066 2.729 .006 LABOR_PRODUCT <--- COLLABO .525 .066 7.914 *** LABOR_PRODUCT <--- NETWORK .407 .053 7.680 *** LABOR_PRODUCT <--- DECENTR .149 .068 2.180 .029 ST1 <--- STAFF 1.000 ST2 <--- STAFF 1.030 .079 12.980 *** ST5 <--- STAFF .807 .064 12.631 *** 338 Estimate S.E. C.R. P ST6 <--- STAFF .918 .070 13.171 *** ST7 <--- STAFF .963 .071 13.472 *** ST8 <--- STAFF .991 .077 12.868 *** ST9 <--- STAFF .957 .076 12.624 *** JT1 <--- JOB_TRAIN 1.000 JT2 <--- JOB_TRAIN .877 .069 12.790 *** JT3 <--- JOB_TRAIN 1.057 .079 13.417 *** JT5 <--- JOB_TRAIN .867 .069 12.546 *** JT7 <--- JOB_TRAIN .948 .075 12.559 *** JT8 <--- JOB_TRAIN 1.074 .085 12.657 *** JT9 <--- JOB_TRAIN .852 .069 12.323 *** DC1 <--- DECENTR 1.000 DC2 <--- DECENTR 1.082 .091 11.878 *** DC3 <--- DECENTR 1.111 .092 12.104 *** DC4 <--- DECENTR 1.124 .098 11.472 *** EM1 <--- EMPLOY_MOTIVATE 1.000 EM2 <--- EMPLOY_MOTIVATE .971 .073 13.292 *** EM4 <--- EMPLOY_MOTIVATE .974 .074 13.120 *** EM6 <--- EMPLOY_MOTIVATE .973 .071 13.750 *** EM7 <--- EMPLOY_MOTIVATE .968 .073 13.263 *** 339 Estimate S.E. C.R. P EM8 <--- EMPLOY_MOTIVATE .926 .067 13.861 *** EM9 <--- EMPLOY_MOTIVATE 1.038 .072 14.319 *** EM10 <--- EMPLOY_MOTIVATE .915 .067 13.581 *** CO1 <--- COLLABO 1.000 CO2 <--- COLLABO .898 .067 13.488 *** CO3 <--- COLLABO .925 .071 13.058 *** CO4 <--- COLLABO .894 .065 13.649 *** NW1 <--- NETWORK 1.000 NW2 <--- NETWORK 1.005 .073 13.795 *** NW3 <--- NETWORK .949 .070 13.634 *** NW4 <--- NETWORK 1.031 .069 14.968 *** NW5 <--- NETWORK .892 .064 13.982 *** NW6 <--- NETWORK 1.005 .065 15.573 *** LA1 <--- LABOR_PRODUCT 1.000 LA2 <--- LABOR_PRODUCT .837 .062 13.575 *** LA3 <--- LABOR_PRODUCT .886 .064 13.815 *** LA4 <--- LABOR_PRODUCT .854 .060 14.205 *** LA5 <--- LABOR_PRODUCT .883 .058 15.113 *** LA6 <--- LABOR_PRODUCT .875 .064 13.728 *** LA8 <--- LABOR_PRODUCT .864 .064 13.536 *** 340 Standardized Regression Weights: (Group number 1 - Default model) Estimate COLLABO <--- JOB_TRAIN .367 COLLABO <--- DECENTR .308 COLLABO <--- EMPLOY_MOTIVATE .118 NETWORK <--- DECENTR .201 NETWORK <--- EMPLOY_MOTIVATE .125 COLLABO <--- STAFF .216 NETWORK <--- JOB_TRAIN .458 NETWORK <--- STAFF .156 LABOR_PRODUCT <--- COLLABO .490 LABOR_PRODUCT <--- NETWORK .420 LABOR_PRODUCT <--- DECENTR .115 ST1 <--- STAFF .745 ST2 <--- STAFF .723 ST5 <--- STAFF .704 ST6 <--- STAFF .733 ST7 <--- STAFF .749 341 Estimate ST8 <--- STAFF .717 ST9 <--- STAFF .704 JT1 <--- JOB_TRAIN .730 JT2 <--- JOB_TRAIN .724 JT3 <--- JOB_TRAIN .759 JT5 <--- JOB_TRAIN .710 JT7 <--- JOB_TRAIN .711 JT8 <--- JOB_TRAIN .716 JT9 <--- JOB_TRAIN .698 DC1 <--- DECENTR .703 DC2 <--- DECENTR .750 DC3 <--- DECENTR .769 DC4 <--- DECENTR .718 EM1 <--- EMPLOY_MOTIVATE .769 EM2 <--- EMPLOY_MOTIVATE .710 EM4 <--- EMPLOY_MOTIVATE .702 EM6 <--- EMPLOY_MOTIVATE .732 EM7 <--- EMPLOY_MOTIVATE .709 EM8 <--- EMPLOY_MOTIVATE .737 EM9 <--- EMPLOY_MOTIVATE .758 342 Estimate EM10 <--- EMPLOY_MOTIVATE .724 CO1 <--- COLLABO .790 CO2 <--- COLLABO .730 CO3 <--- COLLABO .709 CO4 <--- COLLABO .738 NW1 <--- NETWORK .756 NW2 <--- NETWORK .741 NW3 <--- NETWORK .733 NW4 <--- NETWORK .797 NW5 <--- NETWORK .750 NW6 <--- NETWORK .826 LA1 <--- LABOR_PRODUCT .782 LA2 <--- LABOR_PRODUCT .707 LA3 <--- LABOR_PRODUCT .718 LA4 <--- LABOR_PRODUCT .735 LA5 <--- LABOR_PRODUCT .773 LA6 <--- LABOR_PRODUCT .714 LA8 <--- LABOR_PRODUCT .706 343 Covariances: (Group number 1 - Default model) Estimate S.E. C.R. P STAFF <--> JOB_TRAIN .175 .028 6.243 *** STAFF <--> DECENTR .108 .023 4.660 *** STAFF <--> EMPLOY_MOTIVATE .109 .025 4.422 *** DECENTR <--> EMPLOY_MOTIVATE .063 .021 2.980 .003 JOB_TRAIN <--> DECENTR .127 .024 5.279 *** JOB_TRAIN <--> EMPLOY_MOTIVATE .097 .024 4.017 *** Variances: (Group number 1 - Default model) Estimate S.E. C.R. P Label STAFF .382 .050 7.690 *** JOB_TRAIN .377 .050 7.493 *** DECENTR .287 .042 6.854 *** EMPLOY_MOTIVATE .366 .045 8.103 *** e55 .190 .027 7.002 *** e57 .255 .035 7.337 *** 344 Estimate S.E. C.R. P Label e56 .122 .019 6.368 *** e1 .307 .028 11.019 *** e2 .371 .033 11.262 *** e5 .253 .022 11.437 *** e6 .278 .025 11.155 *** e7 .277 .025 10.969 *** e8 .355 .031 11.321 *** e9 .356 .031 11.440 *** e11 .331 .029 11.261 *** e12 .264 .023 11.321 *** e13 .310 .028 10.926 *** e15 .278 .024 11.448 *** e17 .332 .029 11.441 *** e18 .413 .036 11.392 *** e19 .288 .025 11.553 *** e21 .293 .028 10.519 *** e22 .262 .027 9.720 *** e23 .245 .026 9.302 *** e24 .340 .033 10.292 *** e26 .253 .023 10.978 *** 345 Estimate S.E. C.R. P Label e27 .339 .029 11.582 *** e29 .358 .031 11.646 *** e31 .301 .026 11.394 *** e32 .340 .029 11.593 *** e33 .264 .023 11.344 *** e34 .292 .026 11.115 *** e35 .279 .024 11.467 *** e36 .252 .026 9.686 *** e37 .295 .028 10.729 *** e38 .353 .032 10.991 *** e39 .279 .026 10.619 *** e40 .381 .034 11.280 *** e41 .422 .037 11.433 *** e42 .394 .034 11.504 *** e43 .311 .029 10.750 *** e44 .315 .028 11.344 *** e45 .240 .023 10.226 *** e46 .303 .028 11.031 *** e47 .335 .029 11.757 *** e48 .354 .030 11.680 *** 346 Estimate S.E. C.R. P Label e49 .298 .026 11.542 *** e50 .251 .023 11.147 *** e51 .353 .030 11.708 *** e53 .360 .031 11.769 *** Regression Weights: (MODIFICATION INDICES) M.I. Par Change NETWORK <--- COLLABO 6.373 .130 COLLABO <--- NETWORK 7.730 .118 LA6 <--- NW6 4.071 -.079 LA5 <--- EM10 4.395 -.080 LA4 <--- JT7 5.304 .088 LA3 <--- EM8 4.619 .096 LA3 <--- ST8 6.117 -.098 NW5 <--- DECENTR 6.243 .165 NW5 <--- LA6 4.666 .083 NW5 <--- LA1 4.495 .078 NW5 <--- DC4 6.202 .096 NW5 <--- DC1 9.868 .134 347 M.I. Par Change NW4 <--- CO4 4.913 .093 NW4 <--- CO1 8.958 .121 NW4 <--- ST2 6.582 .096 NW3 <--- DECENTR 6.181 -.183 NW3 <--- STAFF 4.555 -.132 NW3 <--- EM6 4.009 -.090 NW3 <--- DC4 8.624 -.126 NW3 <--- DC3 5.540 -.110 NW3 <--- ST7 5.357 -.105 NW3 <--- ST2 8.894 -.122 NW2 <--- JT5 7.497 -.137 NW2 <--- JT2 4.470 -.106 CO2 <--- NW2 5.225 .076 EM10 <--- LA5 4.912 -.085 EM10 <--- CO1 4.022 -.074 EM10 <--- DC4 7.435 .099 EM8 <--- LA3 6.754 .090 EM8 <--- CO4 4.764 .083 EM7 <--- LA6 6.921 .103 EM7 <--- LA5 4.026 .085 348 M.I. Par Change EM4 <--- CO4 5.026 -.098 EM1 <--- LA6 4.366 -.073 EM1 <--- LA5 4.081 -.075 EM1 <--- LA3 4.463 -.073 EM1 <--- NW1 4.435 -.066 DC4 <--- EM10 7.896 .128 DC3 <--- STAFF 4.242 -.108 DC3 <--- NETWORK 4.074 -.091 DC3 <--- NW3 4.419 -.070 DC3 <--- ST7 4.453 -.081 JT5 <--- JT1 4.162 .074 JT3 <--- EM6 6.317 .102 JT3 <--- DC4 4.356 .081 JT1 <--- JT5 4.476 .094 ST6 <--- CO1 4.778 .082 ST5 <--- NW2 6.698 .077 ST2 <--- NW3 5.311 -.088 ST2 <--- CO2 4.318 -.092 ST1 <--- NW2 4.154 -.068 ST1 <--- CO1 4.248 -.082 349 MODEL FIT SUMMARY CMIN Model NPAR CMIN DF P CMIN/DF Default model 103 859.147 843 .342 1.019 Saturated model 946 .000 0 Independence model 43 8147.446 903 .000 9.023 RMR, GFI Model RMR GFI AGFI PGFI Default model .028 .898 .885 .800 Saturated model .000 1.000 Independence model .216 .192 .153 .183 Baseline Comparisons Model NFI Delta1 RFI rho1 IFI Delta2 TLI rho2 CFI Default model .895 .887 .998 .998 .998 Saturated model 1.000 1.000 1.000 350 Model NFI Delta1 RFI rho1 IFI Delta2 TLI rho2 CFI Independence model .000 .000 .000 .000 .000 Parsimony-Adjusted Measures Model PRATIO PNFI PCFI Default model .934 .835 .931 Saturated model .000 .000 .000 Independence model 1.000 .000 .000 NCP Model NCP LO 90 HI 90 Default model 16.147 .000 89.236 Saturated model .000 .000 .000 Independence model 7244.446 6959.125 7536.294 FMIN Model FMIN F0 LO 90 HI 90 Default model 2.542 .048 .000 .264 Saturated model .000 .000 .000 .000 351 Model FMIN F0 LO 90 HI 90 Independence model 24.105 21.433 20.589 22.297 RMSEA Model RMSEA LO 90 HI 90 PCLOSE Default model .008 .000 .018 1.000 Independence model .154 .151 .157 .000 AIC Model AIC BCC BIC CAIC Default model 1065.147 1095.977 1459.225 1562.225 Saturated model 1892.000 2175.156 5511.396 6457.396 Independence model 8233.446 8246.317 8397.964 8440.964 ECVI Model ECVI LO 90 HI 90 MECVI Default model 3.151 3.104 3.368 3.243 352 Model ECVI LO 90 HI 90 MECVI Saturated model 5.598 5.598 5.598 6.435 Independence model 24.359 23.515 25.223 24.397 HOELTER Model HOELTER .05 HOELTER .01 Default model 359 371 Independence model 41 42