Browsing by Author "Anis Salwa Mohd Khairuddin"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Some of the metrics are blocked by yourconsent settings
Publication An automated solid waste detection using the optimized YOLO model for riverine management(FRONTIERS, 2022) ;Nur Athirah Zailan ;Muhammad Mokhzaini Azizan ;Khairunnisa Hasikin ;Anis Salwa Mohd KhairuddinUswah KhairuddinDue to urbanization, solid waste pollution is an increasing concern for rivers, possibly threatening human health, ecological integrity, and ecosystem services. Riverine management in urban landscapes requires best management practices since the river is a vital component in urban ecological civilization, and it is very imperative to synchronize the connection between urban development and river protection. Thus, the implementation of proper and innovative measures is vital to control garbage pollution in the rivers. A robot that cleans the waste autonomously can be a good solution to manage river pollution efficiently. Identifying and obtaining precise positions of garbage are the most crucial parts of the visual system for a cleaning robot. Computer vision has paved a way for computers to understand and interpret the surrounding objects. The development of an accurate computer vision system is a vital step toward a robotic platform since this is the front-end observation system before consequent manipulation and grasping systems. The scope of this work is to acquire visual information about floating garbage on the river, which is vital in building a robotic platform for river cleaning robots. In this paper, an automated detection system based on the improved You Only Look Once (YOLO) model is developed to detect floating garbage under various conditions, such as fluctuating illumination, complex background, and occlusion. The proposed object detection model has been shown to promote rapid convergence which improves the training time duration. In addition, the proposed object detection model has been shown to improve detection accuracy by strengthening the non-linear feature extraction process. The results showed that the proposed model achieved a mean average precision (mAP) value of 89%. Hence, the proposed model is considered feasible for identifying five classes of garbage, such as plastic bottles, aluminum cans, plastic bags, styrofoam, and plastic containers. - Some of the metrics are blocked by yourconsent settings
Publication A Stacked Ensemble Deep Learning Approach For Imbalanced Multi-class Water Quality Index Prediction(Tech Science Press, 2023) ;Wen Yee Wong ;Khairunnisa Hasikin ;Anis Salwa Mohd Khairuddin ;Sarah Abdul Razak ;Hanee Farzana Hizaddin ;Mohd Istajib MokhtarMuhammad Mokhzaini AzizanA common difficulty in building prediction models with realworld environmental datasets is the skewed distribution of classes. There are significantly more samples for day-to-day classes, while rare events such as polluted classes are uncommon. Consequently, the limited availability of minority outcomes lowers the classifier’s overall reliability. This study assesses the capability of machine learning (ML) algorithms in tackling imbalanced water quality data based on the metrics of precision, recall, and F1 score. It intends to balance the misled accuracy towards the majority of data. Hence, 10 ML algorithms of its performance are compared. The classifiers included are AdaBoost, Support Vector Machine, Linear Discriminant Analysis, k-Nearest Neighbors, Naïve Bayes, Decision Trees, Random Forest, Extra Trees, Bagging, and the Multilayer Perceptron. This study also uses the Easy Ensemble Classifier, Balanced Bagging, and RUSBoost algorithm to evaluate multi-class imbalanced learning methods. The comparison results revealed that a highaccuracy machine learning model is not always good in recall and sensitivity. This paper’s stacked ensemble deep learning (SE-DL) generalization model effectively classifies the water quality index (WQI) based on 23 input variables. The proposed algorithm achieved a remarkable average of 95.69%, 94.96%, 92.92%, and 93.88% for accuracy, precision, recall, and F1 score, respectively. In addition, the proposed model is compared against two state-of-the-art classifiers, the XGBoost (eXtreme Gradient Boosting) and Light Gradient Boosting Machine, where performance metrics of balanced accuracy and g-mean are included. The experimental setup concluded XGBoost with a higher balanced accuracy and G-mean. However, the SE-DL model has a better and more balanced performance in the F1 score. The SE-DL model aligns with the goal of this study to ensure the balance between accuracy and completeness for each water quality class. The proposed algorithm is also capable of higher efficiency at a lower computational time against using the standard Synthetic Minority Oversampling Technique (SMOTE) approach to imbalanced datasets. - Some of the metrics are blocked by yourconsent settings
Publication Water Quality Index Using Modified Random Forest Technique: Assessing Novel Input Features(TECH SCIENCE PRESS, 2022) ;Wen Yee Wong ;Ayman Khallel Ibrahim Al-Ani ;Khairunnisa Hasikin ;Anis Salwa Mohd Khairuddin ;Sarah Abdul Razak ;Hanee Farzana Hizaddin ;Mohd Istajib MokhtarMuhammad Mokhzaini AzizanWater quality analysis is essential to understand the ecological status of aquatic life. Conventional water quality index (WQI) assessment methods are limited to features such as water acidic or basicity (pH), dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N), and suspended solids (SS). These features are often insufficient to represent the water quality of a heavy metal–polluted river. Therefore, this paper aims to explore and analyze novel input features in order to formulate an improved WQI. In this work, prospective insights on the feasibility of alternative water quality input variables as new discriminant features are discussed. The new discriminant features are a step toward formulating adaptive water quality parameters according to the land use activities surrounding the river. The results and analysis obtained from this study have proven the possibility of predicting WQI using new input features. This work analyzes 17 new input features, namely conductivity (COND), salinity (SAL), turbidity (TUR), dissolved solids (DS), nitrate (NO3), chloride (Cl), phosphate (PO4), arsenic (As), chromium (Cr), zinc (Zn), calcium (Ca), iron (Fe), potassium (K), magnesium (Mg), sodium (Na), E. coli, and total coliform, in predicting WQI using machine learning techniques. Five regression algorithms—random forest (RF), AdaBoost, support vector regression (SVR), decision tree regression (DTR), and multilayer perception (MLP)—are applied for preliminary model selection. The results show that the RF algorithm exhibits better prediction performance, with R2 of 0.974. Then, this work proposes a modified RF by incorporating the synthetic minority oversampling technique (SMOTE) into the conventional RF method. The proposed modified RF method is shown to achieve 77.68%, 74%, 69%, and 71% accuracy, precision, recall, and F1-score, respectively. In addition, the sensitivity analysis is included to highlight the importance of the turbidity variable in WQI prediction. The results of sensitivity analysis highlight the importance of certain water quality variables that are not present in the conventional WQI formulation. - Some of the metrics are blocked by yourconsent settings
Publication Water, Soil and Air Pollutants' Interaction on Mangrove Ecosystem and Corresponding Artificial Intelligence Techniques Used in Decision Support Systems - A Review(IEEE Xplore, 2021) ;Wen Yee Wong ;Ayman Khallel Ibrahim Al-Ani ;Khairunnisa Hasikin ;Anis Salwa Mohd Khairuddin ;Sarah Abdul Razak ;Hanee Farzana Hizaddin ;Mohd Istajib MokhtarMuhammad Mokhzaini AzizanThe feasibility of artificial intelligence (AI) as a predictive model for thorough efficacy analysis on environmental pollution applied on mangrove forests are discussed. Mangrove forests are among the most productive and biological diverse ecosystems on the planet. However, due to environmental pollution and climate change, mangrove forests are in serious decline. Despite crucial issues pertaining mangrove forests, the law enforcement on the ecosystem is still dubious due to the lack of evidence and data that could provide accurate analysis and prediction. The main highlight of this review elaborates on pollutant markers in soil, water, and air, by correlating these three aspects to the sustainability of mangrove ecosystem. The research gap identified from this review suggests the application of an integrated environmental prediction system for practical environmental insights. A predictive model for environmental decision-making could be developed by integrating meteorological, climatological, hydrological, atmospheric, and heavy metal concentration to understand the interaction between each factor for an efficient solution of pollutant reduction scheme involving mangrove ecosystems.