Browsing by Author "Chern B.H."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Some of the metrics are blocked by yourconsent settings
Publication Characterization of the influence of main emulsion components on the physicochemical properties of orange beverage emulsion using response surface methodology(Elsevier, 2009) ;Mirhosseini H. ;Tan C.P. ;Hamid N.S.A. ;Yusof S. ;Chern B.H. ;Faculty of Science and Technology ;Universiti Putra Malaysia (UPM)Universiti Sains Islam Malaysia (USIM)The present work was conducted to investigate the influence of main emulsion components, namely Arabic gum (7-13% w/w), xanthan gum (0.1-0.3% w/w) and orange oil (6-10% w/w) contents on physical stability, viscosity, cloudiness and conductivity of orange beverage emulsion. In this study, 20 orange beverage emulsions were established based on a three-factor central composite design (CCD) involving 8 factorial points, 6 axial points and 6 center points. The main objective of the present study was to determine an optimal concentration level of main emulsion components leading to an optimum orange beverage emulsion with desirable physicochemical properties. In general, all response surface models were significantly (p<0.05) fitted for describing the variability of physical stability, viscosity, conductivity and cloudiness as a nonlinear function of the content of main emulsion components. More than 84% of the variation of physicochemical properties of orange beverage emulsion could be explained as a function of the content of the main beverage emulsion components. In general, the orange oil content appeared to be the most significant (p<0.05) factor influencing all emulsion characteristics studied except for conductivity. From the optimization procedure, the overall optimal region leading to the desirable orange beverage emulsion was predicted to be achieved by the combined level of 13% (w/w) Arabic gum, 0.22% (w/w) xanthan gum and 10% (w/w) orange oil. � 2008 Elsevier Ltd. All rights reserved. - Some of the metrics are blocked by yourconsent settings
Publication Influence of pectin and CMC on physical stability, turbidity loss rate, cloudiness and flavor release of orange beverage emulsion during storage(2008) ;Mirhosseini H. ;Tan C.P. ;Aghlara A. ;Hamid N.S.A. ;Yusof S. ;Chern B.H. ;Universiti Putra Malaysia (UPM)Universiti Sains Islam Malaysia (USIM)In the present work, the effect of type and concentration of two hydrocolloids namely pectin (1.5%, 3% and 4.5%) and CMC (0.1%, 0.3% and 0.5%) on physical stability, turbidity loss rate, cloudiness and flavor release of orange beverage emulsion was investigated during six months storage. From the turbidity loss rate results, the orange beverage emulsions containing 4.5% and 1.5% (w/w) pectin showed the highest and least storage stability, respectively. In contrast to the first two months storage, the replacement of both supplementary emulsion components resulted in a significant (p < 0.05) increase in turbidity loss rate of all orange beverage emulsions, thus indicating a decrease in capability of beverage emulsion to maintain the cloudiness during storage. The cloudiness of all samples significantly (p < 0.05) decreased during storage. The differences between the volatile release behaviors of target volatile compounds from orange beverage emulsions having different formulations indicated that the overall volatile flavor release was strongly influenced by the emulsion composition. This finding may be explained by the interactions between emulsion matrix and volatile flavor compounds. The release contents of most of target flavor compounds were significantly (p < 0.05) decreased during storage, especially for the aldehyde compounds studied (i.e. octanal, decanal, neral, geranial). � 2007 Elsevier Ltd. All rights reserved.