Browsing by Author "Fariha, MMN"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Some of the metrics are blocked by yourconsent settings
Publication Endogenous and induced angiogenic characteristics of human chorion-derived stem cells(Wiley, 2012) ;Fariha, MMN ;Chua, KH ;Tan, GC ;Lim, YHHayati, ARCell-based therapy using stem cells has emerged as one of the pro-angiogenic methods to enhance blood vessel growth and sprouting in ischaemic conditions. This study investigated the endogenous and induced angiogenic characteristics of hCDSC (human chorion-derived stem cell) using QPCR (quantitative PCR) method, immunocytochemistry and fibrin-matrigel migration assay. The results showed that cultured hCDSC endogenously expressed angiogenic-endogenic-associated genes (VEGF, bFGF, PGF, HGF, Ang-1, PECAM-1, eNOS, Ve-cad, CD34, VEGFR-2 and vWF), with significant increase in mRNA levels of PGF, HGF, Ang-1, eNOS, VEGFR-2 and vWF following induction by bFGF (basic fibroblast growth factor) and VEGF (vascular endothelial growth factor). These enhanced angiogenic properties suggest that induced hCDSC provides a stronger angiogenic effect for the treatment of ischaemia. After angiogenic induction, hCDSC showed no reduction in the expression of the stemness genes, but had significantly higher levels of mRNA of Oct-4, Nanog (3), FZD9, ABCG-2 and BST-1. The induced cells were positive for PECAM-1 (platelet/endothelial cell adhesion molecule 1) and vWF (von Willebrand factor) with immunocytochemistry staining. hCDSC also showed endothelial migration behaviour when cultured in fibrin-matrigel construct and were capable of forming vessels in vivo after implanting into nude mice. These data suggest that hCDSC could be the cells of choice in the cell-based therapy for pro-angiogenic purpose. - Some of the metrics are blocked by yourconsent settings
Publication Pro-angiogenic potential of human chorion-derived stem cells: in vitro and in vivo evaluation(Wiley, 2013) ;Fariha, MMN ;Chua, KH ;Tan, GC ;Lim, YHHayati, ARHuman chorion-derived stem cells (hCDSC) were previously shown to demonstrate multipotent properties with promising angiogenic characteristics in monolayer-cell culture system. In our study, we investigated the angiogenic capability of hCDSC in 3-dimensional (3D) in vitro and in vivo angiogenic models for the purpose of future application in the treatment of ischaemic diseases. Human CDSC were evaluated for angiogenic and endogenic genes expressions by quantitative PCR. Growth factors secretions were quantified using ELISA. In vitro and in vivo vascular formations were evaluated by histological analysis and confocal microscopic imaging. PECAM-1+ and vWF+ vascular-like structures were observed in both in vitro and in vivo angiogenesis models. High secretions of VEGF and bFGF by hCDSC with increased expressions of angiogenic and endogenic genes suggested the possible angiogenic promoting mechanisms by hCDSC. The cooperation of hCDSC with HUVECS to generate vessel-like structures in our systems is an indication that there will be positive interactions of hCDSC with existing endothelial cells when injected into ischaemic tissues. Hence, hCDSC is suggested as the novel approach in the future treatment of ischaemic diseases. - Some of the metrics are blocked by yourconsent settings
Publication Stemness and angiogenic gene expression changes of serial-passage human amnion mesenchymal cells(Academic Press Inc Elsevier Science, 2013) ;Fatimah, SS ;Tan, GC ;Chua, K ;Fariha, MMN ;Tan, AEHayati, ARBackground: Particular attention has been directed towards human amnion mesenchymal stem cells (HAMCs) due to their accessibility, availability and immunomodulatory properties. Therefore, the aim of the present study was to determine the temporal changes of sternness and angiogenic gene expressions of serial-passage HAMCs. Methods: HAMCs were isolated from human term placenta and cultured in serial passages in culture medium supplemented with 10% fetal bovine serum. Morphological analysis, growth kinetic and CFU-F assay of HAMCs were assessed. In vitro differentiation and the immunophenotype of HAMCs at P5 were also analyzed. Quantitative PCR was used to determine the sternness, angiogenic and endothelial gene expression of cultured HAMCs after serial passage. Results: Cultured HAMCs displayed intermediate epitheloid-fibroblastoid morphology at an initial culture and the fibroblastoid features became more pronounced in later passages. They showed high clonogenic activity and faster proliferation at later passages with colony forming efficiency of 0.88%. HAMCs were successfully differentiated into adipocytes, osteocytes and neuron-like cells. Most HAMCs expressed CD9, CD44, CD73, CD90 and HLA-A,B,C but negligibly expressed CD31, CD34, CD45, CD117 and HLA-DR,DP,DQ. After serial passage, sternness genes Oct-3/4, Sox-2, Nanog3, Rex-1, FGF-4 and FZD-9 expressions significantly decreased. Of the angiogenic genes PECAM-1, bFGF, eNOS, VEGFR-2, VEGF, and vWF expressions also decreased significantly except angiopoietin-1 which significantly increased. No significant differences were observed in ABCG-2, BST-1, nestin, PGF and HGF expressions after serial passage. Conclusion: These results suggested that cultured HAMCs could be an alternative source of stem cells and may have the potential for angiogenesis and hence its use in stem-cell based therapy. (C) 2012 Elsevier Inc. All rights reserved.