Browsing by Author "Fatimah S.S."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Some of the metrics are blocked by yourconsent settings
Publication Effects of epidermal growth factor on the proliferation and cell cycle regulation of cultured human amnion epithelial cells(2012) ;Fatimah S.S. ;Tan G.C. ;Chua K.H. ;Tan A.E. ;Hayati A.R. ;Faculty of Medicine and Health Sciences ;Universiti Kebangsaan Malaysia (UKM)Universiti Sains Islam Malaysia (USIM)Human amnion epithelial cells (HAECs) hold great promise in tissue engineering for regenerative medicine. Large numbers of HAECs are required for this purpose. Hence, exogenous growth factor is added to the culture medium to improve epithelial cells proliferation. The aim of the present study was to determine the effects of epidermal growth factor (EGF) on the proliferation and cell cycle regulation of cultured HAECs. HAECs at P1 were cultured for 7 days in medium containing an equal volume mix of HAM's F12: Dulbecco's Modified Eagles Medium (1:1) supplemented with different concentrations of EGF (0, 5, 10, 20, 30 and 50. ng/ml EGF) in reduced serum. Morphology, growth kinetics and cell cycle analysis using flow cytometry were assessed. Quantitative gene expression for cell cycle control genes, pluripotent transcription factors, epithelial genes and neuronal genes were also determined. EGF enhanced HAECs proliferation with optimal concentration at 10. ng/ml EGF. EGF significantly increased the proportion of HAECs at S- and G2/M-phase of the cell cycle compared to the control. At the end of culture, HAECs remained as diploid cells under cell cycle analysis. EGF significantly decreased the mRNA expression of p21, pRb, p53 and GADD45 in cultured HAECs. EGF also significantly decreased the pluripotent genes expression: Oct-3/4, Sox2 and Nanog; epithelial genes expression: CK14, p63, CK1 and Involucrin; and neuronal gene expression: NSE, NF-M and MAP 2. The results suggested that EGF is a strong mitogen that promotes the proliferation of HAECs through cell cycle regulation. EGF did not promote HAECs differentiation or pluripotent genes expression. � 2012 The Society for Biotechnology, Japan. - Some of the metrics are blocked by yourconsent settings
Publication Effects of keratinocyte growth factor on skin epithelial differentiation of human amnion epithelial cells(2013) ;Fatimah S.S. ;Tan G.C. ;Chua K. ;Tan A.E. ;Nur Azurah A.G. ;Hayati A.R. ;Faculty of Medicine and Health Sciences ;Universiti Kebangsaan Malaysia (UKM)Universiti Sains Islam Malaysia (USIM)The aim of the present study was to determine the effects of KGF on the differentiation of cultured human amnion epithelial cells (HAECs) towards skin keratinocyte. HAECs at passage 1 were cultured in medium HAM's F12: Dulbecco's Modified Eagles Medium (1:1) supplemented with different concentrations of KGF (0, 5, 10, 20, 30 and 50 ng/ml KGF). Dose-response of KGF on HAECs was determined by morphological assessment; growth kinetic evaluation; immunocytochemical analysis; stemness and epithelial gene expression quantification with two step real time RT-PCR. KGF promotes the proliferation of HAECs with maximal effect observed at 10 ng/ml KGF. However, KGF decreased the stemness genes expression: Oct-3/4, Sox-2, Nanog3, Rex-1, FGF-4, FZD-9 and BST-1. KGF also down-regulates epithelial genes expression: CK3, CK18, CK19, Integrin-?1, p63 and involucrin in cultured HAECs. No significant difference on the gene expression was detected for each Nestin, ABCG-2, CK1 and CK14 in KGF-treated HAECs. Immunocytochemical analysis for both control and KGF-treated HAECs demonstrated positive staining against CK14 and CK18 but negative staining against involucrin. The results suggested that KGF stimulates an early differentiation of HAECs towards epidermal cells. Differentiation of KGF-treated HAECs to corneal lineage is unfavourable. Therefore, further studies are needed to elucidate the roles of KGF in the differentiation of HAECs towards skin keratinocytes. � 2012 Elsevier Ltd and ISBI. All rights reserved. - Some of the metrics are blocked by yourconsent settings
Publication Organotypic culture of human amnion cells in air-liquid interface as a potential substitute for skin regeneration(Elsevier Inc., 2013) ;Fatimah S.S. ;Chua K. ;Tan G.C. ;Azmi T.I. ;Tan A.E. ;Rahman H.A. ;Faculty of Medicine and Health Sciences ;Universiti Kebangsaan Malaysia (UKM) ;Universiti Malaysia Sabah (UMS) ;Universiti Putra Malaysia (UPM)Universiti Sains Islam Malaysia (USIM)Background aims: The aim of the present study was to evaluate the effects of air-liquid interface on the differentiation potential of human amnion epithelial cells (HAECs) to skin-like substitute in organotypic culture. Methods: HAECs at passage 1e2 were seeded onto a fibrin layer populated with human amnion mesenchymal cells to form the organotypic cultures. The organotypic HAECs were then cultured for 7, 14 and 21 d in two types of culture system: the submerged culture and the airliquid interface culture. Cell morphogenesis was examined under the light and electron microscopes (transmission and scanning) and analyzed by immunohistochemistry. Results: Organotypic HAECs formed a single layer epithelium after 3 wk in submerged as well as air-liquid interface cultures. Ultrastructurally, desmosomes were observed in organotypic HAECs cultured in the air-liquid interface but not in the submerged culture. The presence of desmosomes marked the onset of early epidermal differentiation. Organotypic HAECs were positive against anti-CK18 and anti-CK14 in both the submerged and the air-liquid interface cultures. The co-expression of CK14 and CK18 suggested that differentiation of HAECs into skin may follow the process of embryonic skin development. However, weak expression of CK14 was observed after 2 and 3 wk of culture in air-liquid interface. CK10, involucrin, type IV collagen and laminin-5 expression was absent in organotypic HAECs. This observation reflects the initial process of embryonic epidermal differentiation and stratification. Conclusions: Results from the present study suggest that the air-liquid interface could stimulate early differentiation of organotypic HAECs to epidermal cells, with a potential use for skin regeneration. � 2013, International Society for Cellular Therapy. - Some of the metrics are blocked by yourconsent settings
Publication Stemness and angiogenic gene expression changes of serial-passage human amnion mesenchymal cells(2013) ;Fatimah S.S. ;Tan G.C. ;Chua K. ;Fariha M.M.N. ;Tan A.E. ;Hayati A.R. ;Faculty of Medicine and Health Sciences ;Universiti Kebangsaan Malaysia (UKM)Universiti Sains Islam Malaysia (USIM)Background: Particular attention has been directed towards human amnion mesenchymal stem cells (HAMCs) due to their accessibility, availability and immunomodulatory properties. Therefore, the aim of the present study was to determine the temporal changes of stemness and angiogenic gene expressions of serial-passage HAMCs. Methods: HAMCs were isolated from human term placenta and cultured in serial passages in culture medium supplemented with 10% fetal bovine serum. Morphological analysis, growth kinetic and CFU-F assay of HAMCs were assessed. In vitro differentiation and the immunophenotype of HAMCs at P5 were also analyzed. Quantitative PCR was used to determine the stemness, angiogenic and endothelial gene expression of cultured HAMCs after serial passage. Results: Cultured HAMCs displayed intermediate epitheloid-fibroblastoid morphology at an initial culture and the fibroblastoid features became more pronounced in later passages. They showed high clonogenic activity and faster proliferation at later passages with colony forming efficiency of 0.88%. HAMCs were successfully differentiated into adipocytes, osteocytes and neuron-like cells. Most HAMCs expressed CD9, CD44, CD73, CD90 and HLA-A,B,C but negligibly expressed CD31, CD34, CD45, CD117 and HLA-DR,DP,DQ. After serial passage, stemness genes Oct-3/4, Sox-2, Nanog3, Rex-1, FGF-4 and FZD-9 expressions significantly decreased. Of the angiogenic genes PECAM-1, bFGF, eNOS, VEGFR-2, VEGF, and vWF expressions also decreased significantly except angiopoietin-1 which significantly increased. No significant differences were observed in ABCG-2, BST-1, nestin, PGF and HGF expressions after serial passage. Conclusion: These results suggested that cultured HAMCs could be an alternative source of stem cells and may have the potential for angiogenesis and hence its use in stem-cell based therapy. � 2012 Elsevier Inc.