Browsing by Author "Hayati, AR"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Some of the metrics are blocked by yourconsent settings
Publication Effects of epidermal growth factor on the proliferation and cell cycle regulation of cultured human amnion epithelial cells(Soc Bioscience Bioengineering Japan, 2012) ;Fatimah, SS ;Tan, GC ;Chua, KH ;Tan, AEHayati, ARHuman amnion epithelial cells (HAECs) hold great promise in tissue engineering for regenerative medicine. Large numbers of HAECs are required for this purpose. Hence, exogenous growth factor is added to the culture medium to improve epithelial cells proliferation. The aim of the present study was to determine the effects of epidermal growth factor (EGF) on the proliferation and cell cycle regulation of cultured HAECs. HAECs at P1 were cultured for 7 days in medium containing an equal volume mix of HAM's F12: Dulbecco's Modified Eagles Medium (1:1) supplemented with different concentrations of EGF (0, 5, 10, 20, 30 and 50 ng/ml EGF) in reduced serum. Morphology, growth kinetics and cell cycle analysis using flow cytometry were assessed. Quantitative gene expression for cell cycle control genes, pluripotent transcription factors, epithelial genes and neuronal genes were also determined. EGF enhanced HAECs proliferation with optimal concentration at 10 ng/ml EGF. EGF significantly increased the proportion of HAECs at S- and G2/M-phase of the cell cycle compared to the control. At the end of culture, HAECs remained as diploid cells under cell cycle analysis. EGF significantly decreased the mRNA expression of p21, pRb, p53 and GADD45 in cultured HAECs. EGF also significantly decreased the pluripotent genes expression: Oct-3/4, Sox2 and Nanog; epithelial genes expression: CK14, p63, CK1 and Involucrin; and neuronal gene expression: NSE, NF-M and MAP 2. The results suggested that EGF is a strong mitogen that promotes the proliferation of HAECs through cell cycle regulation. EGF did not promote HAECs differentiation or pluripotent genes expression. (c) 2012, The Society for Biotechnology, Japan. All rights reserved. - Some of the metrics are blocked by yourconsent settings
Publication Effects of keratinocyte growth factor on skin epithelial differentiation of human amnion epithelial cells(Elsevier Sci Ltd, 2013) ;Fatimah, SS ;Tan, GC ;Chua, K ;Tan, AE ;Azurah, AGNHayati, ARThe aim of the present study was to determine the effects of KGF on the differentiation of cultured human amnion epithelial cells (HAECs) towards skin keratinocyte. HAECs at passage 1 were cultured in medium HAM's F12: Dulbecco's Modified Eagles Medium (1:1) supplemented with different concentrations of KGF (0, 5, 10, 20,30 and 50 ng/ml KGF). Dose-response of KGF on HAECs was determined by morphological assessment; growth kinetic evaluation; immunocytochemical analysis; stemness and epithelial gene expression quantification with two step real time RT-PCR. KGF promotes the proliferation of HAECs with maximal effect observed at 10 ng/ml KGF. However, KGF decreased the sternness genes expression: Oct-3/4, Sox-2, Nanog3, Rex-1, FGF-4, FZD-9 and BST-1. KGF also down-regulates epithelial genes expression CK3, CK18; CK19, Integrin-beta 1, p63 and involucrin in cultured HAECs. No significant difference on the gene expression was detected for each Nestin, ABCG-2, CK1 and CK14 in KGF-treated HAECs. Immunocytochemical analysis for both control and KGF-treated HAECs demonstrated positive staining against CK14 and CK18 but negative staining against involucrin. The results suggested that KGF stimulates an early differentiation of HAECs towards epidermal cells. Differentiation of KGF-treated HAECs to corneal lineage is unfavourable. Therefore, further studies are needed to elucidate the roles of KGF in the differentiation of HAECs towards skin keratinocytes. (C) 2012 Elsevier Ltd and ISBI. All rights reserved. - Some of the metrics are blocked by yourconsent settings
Publication Endogenous and induced angiogenic characteristics of human chorion-derived stem cells(Wiley, 2012) ;Fariha, MMN ;Chua, KH ;Tan, GC ;Lim, YHHayati, ARCell-based therapy using stem cells has emerged as one of the pro-angiogenic methods to enhance blood vessel growth and sprouting in ischaemic conditions. This study investigated the endogenous and induced angiogenic characteristics of hCDSC (human chorion-derived stem cell) using QPCR (quantitative PCR) method, immunocytochemistry and fibrin-matrigel migration assay. The results showed that cultured hCDSC endogenously expressed angiogenic-endogenic-associated genes (VEGF, bFGF, PGF, HGF, Ang-1, PECAM-1, eNOS, Ve-cad, CD34, VEGFR-2 and vWF), with significant increase in mRNA levels of PGF, HGF, Ang-1, eNOS, VEGFR-2 and vWF following induction by bFGF (basic fibroblast growth factor) and VEGF (vascular endothelial growth factor). These enhanced angiogenic properties suggest that induced hCDSC provides a stronger angiogenic effect for the treatment of ischaemia. After angiogenic induction, hCDSC showed no reduction in the expression of the stemness genes, but had significantly higher levels of mRNA of Oct-4, Nanog (3), FZD9, ABCG-2 and BST-1. The induced cells were positive for PECAM-1 (platelet/endothelial cell adhesion molecule 1) and vWF (von Willebrand factor) with immunocytochemistry staining. hCDSC also showed endothelial migration behaviour when cultured in fibrin-matrigel construct and were capable of forming vessels in vivo after implanting into nude mice. These data suggest that hCDSC could be the cells of choice in the cell-based therapy for pro-angiogenic purpose. - Some of the metrics are blocked by yourconsent settings
Publication Gene expression in obstetric antiphospholipid syndrome: a systematic review(Malaysian Journal Pathology, 2016) ;Muhammad Aliff, M ;Muhammad Shazwan, S ;Nur Fariha, MM ;Hayati, AR ;Nur Syahrina Rahim ;Maizatul Azma, M ;Nazefah Abdul Hamid ;Jameela, S ;Prof. Madya Dr. Asral Wirda Binti Ahmad Asnawi ;Faculty of Medicine and Health SciencesUniversiti Sains Islam Malaysia (USIM)BACKGROUND: Antiphospholipid syndrome (APS) is a multisystem disease that may present as venous or arterial thrombosis and/or pregnancy complications with the presence of antiphospholipid antibodies. Until today, heterogeneity of pathogenic mechanism fits well with various clinical manifestations. Moreover, previous studies have indicated that genes are differentially expressed between normal and in the disease state. Hence, this study systematically searched the literature on human gene expression that was differentially expressed in Obstetric APS.METHODOLOGY: Electronic search was performed until 31st March 2015 through PubMed and Embase databases; where the following Medical Subject Heading (MeSH) terms were used and they had been specified as the primary focus of the articles; gene, antiphospholipid, obstetric, and pregnancy in the title or abstract. From 502 studies retrieved from the search, only original publications that had performed gene expression analyses of human placental tissue that reported on differentially expressed gene in pregnancies with Obstetric APS were included. Two reviewers independently scrutinized the titles and the abstracts before examining the eligibility of studies that met the inclusion criteria. For each study; diagnostic criteria for APS, method for analysis, and the gene signature were extracted independently by two reviewers. The genes listed were further analysed with the DAVID and the KEGG pathways.RESULTS: Three eligible gene expression studies involving obstetric APS, comprising the datasets on gene expression, were identified. All three studies showed a reduction in transcript expression on PRL, STAT5, TF, DAF, ABCA1, and HBEGF in Obstetric APS. The high enrichment score for functionality in DAVID had been positive regulation of cell proliferation. Meanwhile, pertaining to the KEGG pathway, two pathways were associated with some of the listed genes, which were ErBb signalling pathway and JAK-STAT signalling pathway.CONCLUSION: Ultimately, studies on a genetic level have the potential to provide new insights into the regulation and to widen the basis for identification of changes in the mechanism of Obstetric APS. Keywords: antiphospholipid, gene, obstetric, pregnancy - Some of the metrics are blocked by yourconsent settings
Publication MicroRNA expression in antiphospholipid syndrome: a systematic review and microRNA target genes analysis(Malaysian Journal Pathology, 2016) ;Muhammad Shazwan, S ;Muhammad Aliff, M ;Asral Wirda, AA ;Hayati, AR ;Maizatul Azma, M ;Nur Syahrina, AR ;Nazefah Abdul Hamid ;Jameela, S ;Nur Fariha, MM ;Faculty of Medicine and Health SciencesUniversiti Sains Islam Malaysia (USIM)INTRODUCTION: Antiphospholipid antibodies (aPL) are autoantibodies that attack phospholipid through anti-beta 2-glycoprotein 1. The actions of aPL are associated with events leading to thrombosis and morbidity in pregnancy. Antiphospholipid syndrome (APS) is diagnosed when a patient is persistently positive for aPL and also has recognised clinical manifestations such as recurrent pregnancy losses, arterial or venous thrombosis and in a catastrophic case, can result in death. Unfortunately, the pathogenesis of APS is still not well established. Recently, microRNA expressed in many types of diseased tissues were claimed to be involved in the pathological progression of diseases and has become a useful biomarker to indicate diseases, including APS.OBJECTIVE: This systematic review aims to search for research papers that are focussing on microRNA expression profiles in APS.METHOD: Three search engines (Ebcohost, ProQuest and Ovid) were used to identify papers related to expression of specific microRNA in antiphospholipid syndrome.RESULTS AND DISCUSSION: A total of 357 papers were found and screened, out of which only one study fulfilled the requirement. In this particular study blood samples from APS patients were tested. The microRNAs found to be related to APS were miR-19b and miR-20a. No data was found on specific microRNA being expressed in obstetric antiphospholipid syndrome. Analysis on the microRNA target genes revealed that most genes targeted by miR-19b and miR-20a involve in TGF-Beta Signalling and VEGF, hypoxia and angiogenesis pathways.CONCLUSION: In view of the limited data on the expressions of microRNA in APS we recommend further research into this field. Characterization of microRNA profile in blood as well as in placenta tissue of patients with APS could be useful in identifying microRNAs involved in obstetric APS. - Some of the metrics are blocked by yourconsent settings
Publication Pro-angiogenic potential of human chorion-derived stem cells: in vitro and in vivo evaluation(Wiley, 2013) ;Fariha, MMN ;Chua, KH ;Tan, GC ;Lim, YHHayati, ARHuman chorion-derived stem cells (hCDSC) were previously shown to demonstrate multipotent properties with promising angiogenic characteristics in monolayer-cell culture system. In our study, we investigated the angiogenic capability of hCDSC in 3-dimensional (3D) in vitro and in vivo angiogenic models for the purpose of future application in the treatment of ischaemic diseases. Human CDSC were evaluated for angiogenic and endogenic genes expressions by quantitative PCR. Growth factors secretions were quantified using ELISA. In vitro and in vivo vascular formations were evaluated by histological analysis and confocal microscopic imaging. PECAM-1+ and vWF+ vascular-like structures were observed in both in vitro and in vivo angiogenesis models. High secretions of VEGF and bFGF by hCDSC with increased expressions of angiogenic and endogenic genes suggested the possible angiogenic promoting mechanisms by hCDSC. The cooperation of hCDSC with HUVECS to generate vessel-like structures in our systems is an indication that there will be positive interactions of hCDSC with existing endothelial cells when injected into ischaemic tissues. Hence, hCDSC is suggested as the novel approach in the future treatment of ischaemic diseases. - Some of the metrics are blocked by yourconsent settings
Publication Stemness and angiogenic gene expression changes of serial-passage human amnion mesenchymal cells(Academic Press Inc Elsevier Science, 2013) ;Fatimah, SS ;Tan, GC ;Chua, K ;Fariha, MMN ;Tan, AEHayati, ARBackground: Particular attention has been directed towards human amnion mesenchymal stem cells (HAMCs) due to their accessibility, availability and immunomodulatory properties. Therefore, the aim of the present study was to determine the temporal changes of sternness and angiogenic gene expressions of serial-passage HAMCs. Methods: HAMCs were isolated from human term placenta and cultured in serial passages in culture medium supplemented with 10% fetal bovine serum. Morphological analysis, growth kinetic and CFU-F assay of HAMCs were assessed. In vitro differentiation and the immunophenotype of HAMCs at P5 were also analyzed. Quantitative PCR was used to determine the sternness, angiogenic and endothelial gene expression of cultured HAMCs after serial passage. Results: Cultured HAMCs displayed intermediate epitheloid-fibroblastoid morphology at an initial culture and the fibroblastoid features became more pronounced in later passages. They showed high clonogenic activity and faster proliferation at later passages with colony forming efficiency of 0.88%. HAMCs were successfully differentiated into adipocytes, osteocytes and neuron-like cells. Most HAMCs expressed CD9, CD44, CD73, CD90 and HLA-A,B,C but negligibly expressed CD31, CD34, CD45, CD117 and HLA-DR,DP,DQ. After serial passage, sternness genes Oct-3/4, Sox-2, Nanog3, Rex-1, FGF-4 and FZD-9 expressions significantly decreased. Of the angiogenic genes PECAM-1, bFGF, eNOS, VEGFR-2, VEGF, and vWF expressions also decreased significantly except angiopoietin-1 which significantly increased. No significant differences were observed in ABCG-2, BST-1, nestin, PGF and HGF expressions after serial passage. Conclusion: These results suggested that cultured HAMCs could be an alternative source of stem cells and may have the potential for angiogenesis and hence its use in stem-cell based therapy. (C) 2012 Elsevier Inc. All rights reserved.