Browsing by Author "Iylia Idris"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Some of the metrics are blocked by yourconsent settings
Publication Optimization And Mass Transfer Simulation Of Remazol Brilliant Blue R Dye Adsorption Onto Meranti Wood Based Activated Carbon(Elsevier, 2023) ;Mohamad Firdaus Mohamad Yusop ;Muhammad Azan Tamar Jaya ;Iylia Idris ;Ahmad Zuhairi AbdullahMohd Azmier AhmadRemazol brilliant blue R dye (RBBR) brings toxicity to living organisms once it enters the environment. This study utilized response surface methodology (RSM) and Polymath software for optimization and mass transfer simulation purposes, respectively. RSM revealed that the optimum preparation conditions of meranti wood-based activated carbon (MWAC) were 441 W, 5.76 min, and 1.35 g/g for radiation power, radiation time, and KOH:char impregnation ratio (IR), respectively, which translated into 86.39 mg/g of RBBR uptakes and 31.94 % of MWAC’s yield. The simulation study predicted the mass transfer rate, rm to be 112.20 to 1007.50 s 1 and the adsorption rate, k1 to be 3.96 to 4.34 h 1 . The developed model predicted the adsorption surface area, am to be 790.04 m2 /g and this value is highly accurate as compared to the actual mesopores surface area of 825.58 m2 /g. Mechanism analysis divulged that the interaction that occurred between RBBR molecules and MWAC’s surface were hydrogen bond (methylene and alkyne), dipole–dipole force (alkyl carbonate, terminal alkyne, and methoxy), and ion–dipole force (primary amine). The isotherm and kinetic studies found that the adsorption data obeyed the Freundlich model and pseudo-first-order (PFO) model the best, respectively. The Langmuir maximum adsorption capacity, Qm was computed to be 327.33 mg/g. Thermodynamic parameters were calculated to be 4.06 kJ mol 1 , 0.06 kJ mol 1 K 1 , –22.69 kJ mol 1 , and 16.03 kJ mol 1 for DH , DS , DG , and Ea, respectively, which signified the adsorption process studied was exothermic, spontaneous and governed by physisorption. - Some of the metrics are blocked by yourconsent settings
Publication Polymer Formulation Used Incarbon Membrane Synthesis Andperformance Evaluation(Asian Scholars Network, 2023) ;Muhammad Azan Tamar Jaya ;Liyana Amalina Adnan ;Iylia Idris ;Mohd Azmier ;Mohamad Firdaus ;Fadzil Noor GonawanMohd Khairul NizamCarbon membranes are known for their high performance in the separation of gases, particularly for gases with similar kinetic diameter. For this reason, the investigation of carbon membranes continues to increase their performance by tweaking the formulation and heating strategy. One of the formulation aspects is polymer selection, which plays an important role in determining the success of producing carbon membrane with acceptable performance. This is because each polymer has its own characteristics, which then determines the method to be used to synthesize the carbon membrane. Four types of polymers were identified to produce carbon membranes, which are based on non-modified polymer solutions, modified polymer or polymer solutions, non-commercial organic materials and natural polymers such as natural cellulose. This review discusses the overview performances provided by each material.