Browsing by Author "Kahaki, SMM"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Some of the metrics are blocked by yourconsent settings
Publication Blood Cancer Cell Classification based on Geometric Mean Transform and Dissimilarity Metrics(Univ Putra Malaysia Press, 2017) ;Kahaki, SMM ;Nordin, MJ ;Ismail, W ;Zahra, SJHassan, RBlood cancer is an umbrella term for cancers that affect the blood, bone marrow and lymphatic system. There are three main groups of blood cancer: leukemia, lymphoma and myeloma. Some types are more common than others. In this paper, a new image transform based on geometric mean properties of integral values in both horizontal and vertical image directions is proposed for leukemia cancer cell classification. Available classification methods using the classical feature extraction methods which are sensitive to rotation and deformation of the blood cells. The new transform is based on geometric mean projection, which - unlike other image transforms, such as Radon transform-is not considered all signals in an image with the same signal acquisition rate. Instead, it is general and thus applicable to all capturing signal functions to achieve sufficient invariant features. The geometric mean projection transforms (GMPT) guarantees that the detector only extracts the highly informative information from the object to achieve an invariant feature vector for an accurate classification process. This method has been used as cancer cell identification using microscopic Imagery analysis in this study. Dissimilarity metric calculation and shape analysis by using image transform has been used to extract the feature vectors of the imagery. Then, the accumulated feature vectors have been classified to different classes by using artificial neural network (ANN). The proposed technique has been evaluated in the standard images sourced from USIM, Malaysia. The evaluation results indicate the robustness of the technique in different types of images available in the dataset. - Some of the metrics are blocked by yourconsent settings
Publication Geometric feature descriptor and dissimilarity-based registration of remotely sensed imagery(Public Library Science, 2018) ;Kahaki, SMM ;Arshad, H ;Nordin, MJIsmail, WImage registration of remotely sensed imagery is challenging, as complex deformations are common. Different deformations, such as affine and homogenous transformation, combined with multimodal data capturing can emerge in the data acquisition process. These effects, when combined, tend to compromise the performance of the currently available registration methods. A new image transform, known as geometric mean projection transform, is introduced in this work. As it is deformation invariant, it can be employed as a feature descriptor, whereby it analyzes the functions of all vertical and horizontal signals in local areas of the image. Moreover, an invariant feature correspondence method is proposed as a point matching algorithm, which incorporates new descriptor's dissimilarity metric. Considering the image as a signal, the proposed approach utilizes a square Eigenvector correlation (SEC) based on the Eigenvector properties. In our experiments on standard test images sourced from "Featurespace" and "IKONOS" datasets, the proposed method achieved higher average accuracy relative to that obtained from other state of the art image registration techniques. The accuracy of the proposed method was assessed using six standard evaluation metrics. Furthermore, statistical analyses, including t-test and Friedman test, demonstrate that the method developed as a part of this study is superior to the existing methods.