Browsing by Author "Mohd Cairul Iqbal Mohd Amin"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Some of the metrics are blocked by yourconsent settings
Publication Pengembungan Hidrogel Selulosa Bakteria-asid Akrilik : Sensitiviti Terhadap Rangsangan Luar(Penerbit UKM, 2009) ;Nadia Halib ;Mohd Cairul Iqbal Mohd Amin ;Ishak Ahmad ;Zulkifli Mohamed HashimNoriah JamalThis study evaluated various environmental factors affecting the swelling degree of bacterial cellulose-acrylic acid hydrogels. Aqueous bacterial cellulose-acrylic acid (4:1) mixtures were prepared and subjected to electron beam irradiation at 30 and 50 kGy. Swelling rate under influenced of pH, temperature and ionic strength was investigated from 1 to 24 hours. Swelling degree of hydrogels was dependent on irradiation dose: those synthesized at 50 kGy exhibited significant higher swelling degree (p<0.0001) in methanol (619%) compared to water (510%) at room temperature after 24 hours. External ionic strength affected swelling, i.e, elevation in sodium chloride concentration decreased swelling degree. Hydrogels were also sensitive to pH: swelling increased with increasing pH and was optimal at pH 7. Swelling also increased with increasing temperature from 25¡C to 50¡C. In conclusion, the ability of electron irradiated bacterial cellulose-acrylic acid hydrogels to respond to various external environment make it a material to be developed as an active delivery system for drugs, proteins and hormones. - Some of the metrics are blocked by yourconsent settings
Publication Physicochemical Properties And Characterization Of Nata De Coco From Local Food Industries As A Source Of Cellulose.(UKM Press, Universiti Kebangsaan Malaysia, 2012) ;Nadia HalibMohd Cairul Iqbal Mohd AminNata de coco, a dessert originally from the Philippines is produced by fermentation of coconut water with a culture of Acetobacter xylinum, a gram negative bacterium. Acetobacter xylinum metabolizes glucose in coconut juice and converts it into bacterial cellulose that has unique properties including high purity, crystallinity and mechanical strength. Because the main component of nata de coco is bacterial cellulose, nata de coco was purified, extracted and characterized to determine whether pure cellulose could be isolated from it. The FTIR spectra of bacterial cellulose from nata de coco showed distinguish peaks of 3440 cm-1, 2926 cm-1, 1300 cm-1, 1440 cm-1, 1163 cm-1 and 1040 cm-1, which correspond to O-H stretching, C-H stretching, C-H bending, CH2 bending, C-O-C stretching and C-O stretching, respectively, and represent the fingerprints of pure cellulose component. Moreover, the FTIR curve showed a pattern similar to other bacterial cellulose spectra reported by report. Thermal analysis showed a DTG peak at 342°C, which falls in the range of cellulose degradation peaks (330°C - 370°C). On the other hand, the TGA curve showed 1 step of degradation, and this finding confirmed the purity of nata de coco. Bacterial cellulose powder produced from nata de coco was found to be soluble only in cupriethylenediamine, a well known solvent for cellulose; thus, it was confirmed that nata de coco is a good source of bacterial cellulose. The purity of bacterial cellulose produced from nata de coco renders it suitable for research that uses pure cellulose. - Some of the metrics are blocked by yourconsent settings
Publication Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery(Elsevier, 2012) ;Mohd Cairul Iqbal Mohd Amin ;Naveed Ahmad ;Nadia HalibIshak AhmadTo assist in identifying the utility of novel materials in drug-delivery applications, this study investigated the use of bacterial cellulose (BC), a natural biopolymer, in the synthesis of hydrogels for drug-delivery systems. BC was combined with different proportions of acrylic acid (AA) to fabricate hydrogels by exposure to accelerated electron-beam irradiation at different doses. Fourier transform infrared analysis revealed that the AA had been successfully grafted onto the cellulose fibers and allowed for prediction of the reaction mechanism in the synthesis of hydrogels. Thermal and morphological characterization indicated the formation of thermally stable hydrogels with pore size determined by AA content and irradiation dose. The results of swelling and in vitro drug-release studies revealed the hydrogels to be both thermo- and pH-responsive. Such thermo- and pH-responsiveness, in addition to their morphological characteristics, suggests that these BC/AA hydrogels are promising candidates as controlled drug-delivery systems. - Some of the metrics are blocked by yourconsent settings
Publication Unique Stimuli Responsive Characteristics Of Electron Beam Synthesized Bacterial Cellulose/acrylic Acid Composite(Wiley Periodicals, Inc., 2010) ;Nadia Halib ;Mohd Cairul Iqbal Mohd AminIshak AhmadThe formation and swelling behavior of bacterial cellulose/acrylic acid hydrogel prepared from aqueous mixture consists of 20 : 80 (v/v) acrylic acid (AAc) and 1% bacterial cellulose dispersion under accelerated electron beam was investigated. Gel fraction of hydrogel increased with the increasing dose suggesting a denser composite at 50 kGy compared to 35 kGy. SEM photomicrographs revealed a homogenous pores distribution at higher dose with pore sizes ranging from 1 to 5 μm. Hydrogel synthesized at lower dose of electron beam exhibited higher swelling ability and the degree of swelling increased as the pH of surrounding medium increased and it reached the optimum swelling at pH 7. While swelling of the hydrogel decreased with the increasing ionic strength of solution, swelling at different temperatures ranging from 25 to 50°C revealed a unique character where the hydrogel shrunk at 37°C. Moreover, hydrogel synthesized at higher dose exhibited a higher degree of swelling in methanol with respect to water. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010