Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yahya S."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Some of the metrics are blocked by your 
    consent settings
    Publication
    Optimization of montmorillonite k10 ion-exchange with fe3+ for the application of biodiesel production
    (Malaysian Society of Analytical Sciences, 2020)
    Yahya S.
    ;
    Farah Wahida Harun 
    The modification of montmorillonite K10 with Fe3+ was investigated to study the optimum ion-exchange occurred in the interlayers of clays. Montmorillonite K10 was modified to be applied as a catalyst in biodiesel production from waste cooking oil (WCO). Three methods to optimize the ion-exchange process were investigated. For method 1 and method 2, respective 14% and 27% by mass of Fe in montmorillonite K10 were stirred in a closed cap system for 7 hours while method 3 applied 20% of Fe stirred with montmorillonite K10 for 24 hours until it became mold and slurry. The ability of ion-exchange was tested using SEM/EDX. It was found that 1.21% Fe composition increased by using method 1 while 2.66% Fe increased using method 2. The highest Fe exchange was detected using method 3 with 5.23% increment. For more accurate result, 20% Fe-MMT K10 from method 3 was characterized using XRF and it was found that the ion exchange occurred with interchangeable Ca2+. In correlation, the effect of Fe increment on acidity was studied by using TPD-NH3. Naturally, montmorillonite K10 possessed 0.232 mmol/g of acidity. The results found that the highest acidity was detected for 20% Fe-MMT K10 (14.261 mmol/g). The application of montmorillonite K10 on biodiesel production increased the yield up to 38.39% compared to the reaction without catalyst (26.80%). With the aid of modified montmorillonite K10, 66.54% and 69.32% biodiesel were produced using catalyst from method 1 and 2 respectively. Amazingly, an outstanding yield was produced by using catalyst from method 3 (84.58%). Therefore, 20% Fe-MMT K10 catalyst was selected for further biodiesel optimization via conventional method. It was found that 96.49% biodiesel was successfully produced with 28.65% acid conversion at 150 °C, 6 h, 12:1 methanol: oil and 4 wt.% mass of catalyst. The investigations on acid conversion and biodiesel yield proved that the modification of montmorillonite K10 with 20% Fe is the optimum and the catalyst can undergo both esterification and transesterification reactions simultaneously to produce optimum biodiesel yield. © 2020, Malaysian Society of Analytical Sciences. All rights reserved.
      3  64
Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia