Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yunus, S"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Some of the metrics are blocked by your 
    consent settings
    Publication
    Factors affecting the characteristics of earthing systems under transients by FEM
    (Elsevier Sci Ltd, 2014)
    Nor, NM
    ;
    Yunus, S
    ;
    Trlep, M
    ;
    Othman, M
    ;
    Suratman, A
    ;
    Abdullah, S
    ;
    Ramar, K
    This paper investigates the effects of current magnitudes, steady-stage earth resistances, R-DC, and threshold electric field, E-c on the characteristics of earthing systems under impulse conditions by using Finite Element Method (FEM). It has been reported in literature that there are three scenarios that can occur when the earthing systems are subjected under high impulse conditions as compared to its steady-state conditions, namely; (i) no difference in its resistance values between steady-state and impulse conditions, (ii) earth resistances under impulse were found to be lower than that at steady-state, and (iii) earth resistances were found to be higher under impulse than that at steady-state. It was found that the largest reduction in impulse resistance occurred for the earth resistance with the highest values for different factors; current magnitudes and Ec. Crown Copyright (C) 2014 Published by Elsevier Ltd. All rights reserved.
      1
  • No Thumbnail Available
    Some of the metrics are blocked by your 
    consent settings
    Publication
    Methodologies of Impulse Tests on Earthing Systems by Field Measurements with Different Remote Earth
    (IEEE, 2016)
    Yunus, S
    ;
    Nor, NM
    ;
    Agbor, N
    ;
    Marinah Othman 
    Nowadays, with a good design and available facilities of high impulse generators that can be taken to field sites for measurements, much research work can be found on the field measurement on the study of the grounding under fast transients. Moreover, field tests on earthing systems have become interesting since it can provide the closest scenario of the characteristics of grounding system when fast transient current discharged to the earthing systems. However, the field measurements have some limitations on the standard methodologies that should be adopted during the field measurements. There is also very little being mentioned on the arrangements/values of the remote earth. As generally known, the remote/auxillary earth is important not only for the purpose of discharging any high fault current during the tests on the electrode under tests, but also to ensure that the remote earth is not being included in the measurements, hence affect the accuracy of the measurements. Due to these factors, this paper is to aimed to study how different configurations and resistance values of remote earth on the characteristics of main earthing systems. It was found that different results were obtained when higher earth resistance values of remote earth were used for impulse tests on main earthing systems.
      2
Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia