Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Other Publications
  4. Intelligent Observer-Based Feedback Linearization for Autonomous Quadrotor Control
 
  • Details
Options

Intelligent Observer-Based Feedback Linearization for Autonomous Quadrotor Control

Journal
International Journal of Engineering & Technology (UAE)
Date Issued
2018
Author(s)
Noor Hanis Izzuddin Mat Lazim
Abdul Rashid Husain
Nurul Adilla Mohd Subha
Mohd Ariffanan Mohd Basri
DOI
10.14419/ijet.v7i4.35.26280
Abstract
The presence of disturbances can cause instability to the quadrotor flight and can be dangerous especially when operating near obstacles or other aerial vehicles. In this paper, a hybrid controller called state feedback with intelligent disturbance observer-based control (SF-iDOBC) is developed for trajectory tracking of quadrotor in the presence of time-varying disturbances, e.g. wind. This is achieved by integrating artificial intelligence (AI) technique with disturbance observer-based feedback linearization to achieve a better disturbance rejection capability. Here, the observer estimates the disturbances acting on the quadrotor, while AI technique using the radial basis func-tion neural network (RBFNN) compensates the disturbance estimation error. To improve the error compensation of RBFNN, the k-means clustering method is used to find the optimal centers of the Gaussian activation function. In addition, the weights of the RBFNN are tuned online using the derived adaptation law based on the Lyapunov method, which eliminates the offline training. In the simulation experiment conducted, a total of four input nodes and five hidden neurons are used to compensate for the error. The results obtained demonstrate the effectiveness and merits of the theoretical development.
Subjects

Disturbance Observer;...

File(s)
Loading...
Thumbnail Image
Name

Intelligent Observer-Based Feedback Linearization for Autonomous Quadrotor Control.pdf

Size

961.44 KB

Format

Adobe PDF

Checksum

(MD5):36fa5620bb959215c2c2dee2355e160b

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia