Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Other Publications
  4. Predictive Biostatistical Modeling Of Uric Acid Levels Based On High-density Lipoprotein And Alanine Aminotransferase Using R
 
  • Details
Options

Predictive Biostatistical Modeling Of Uric Acid Levels Based On High-density Lipoprotein And Alanine Aminotransferase Using R

Journal
JP JOURNAL OF BIOSTATISTICS
Date Issued
2025
Author(s)
Wan Muhamad Amir W Ahmad
Mohamad Nasarudin Adnan
Nor Azlida Aleng
Nor Farid Mohd Noor
Ruhaya Hasan
Mohamad Shafiq Mohd Ibrahim
Nurfadhlina Abdul Halim 
Universiti Sains Islam Malaysia 
DOI
https://pphmjopenaccess.com/index.php/jpjb/article/view/3069
Abstract
This study uses biostatistics and R syntax to analyze and model High-Density Lipoprotein (HDL), Alanine Aminotransferase (ALT), and Uric acid values. The work addresses the intricate relationships between these parameters to improve biological prediction accuracy. After Mardia’s test of multivariate normality, data normalization was done methodically to ensure variable comparability. A multiple linear regression model was used to develop a predictive model that estimated HDL and ALT contributions to Uric acid levels, revealing their relative importance. The regression model’s p values and contribution percentages showed that ALT affected Uric acid levels more than HDL.
Subjects

generalized additive...

Mardia’s test

Uric acid

multivariate normalit...

nonparametric regress...

File(s)
Loading...
Thumbnail Image
Name

Predictive Biostatistical Modeling Of Uric Acid Levels Based On High-density Lipoprotein And Alanine Aminotransferase Using R.pdf

Size

215.92 KB

Format

Adobe PDF

Checksum

(MD5):de2fe0f73fd898e6af5106e743df9a47

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia