Publication:
On the weak localization principle of the eigenfunction expansions of the laplace-beltrami operator by Riesz Method

dc.contributor.authorAnvarjon Ahmedoven_US
dc.contributor.authorAhmad Fadly Nurullah Rasedeeen_US
dc.date.accessioned2024-05-28T04:21:21Z
dc.date.available2024-05-28T04:21:21Z
dc.date.issued2015
dc.description.abstractIn this paper we deal with the problems of the weak localization of the eigenfunction expansions related to Laplace-Beltrami operator on unit sphere. The conditions for weak localization of Fourier-Laplace series are investigated by comparing the Riesz and Cesaro methods of summation for eigenfunction expansions of the Laplace- Beltrami operator. It is shown that the weak localization principle for the integrable functions f (x) at the point x depends not only on behavior of the function around x but on the behavior of the function around diametrically opposite point x.en_US
dc.identifier.citationAhmedov, Anvarjon. On the Weak Localization Principle of the Eigenfunction Expansions of the Laplace-Beltrami Operator By Riesz Method. Institute for Mathematical Research, Universiti Putra Malaysia, 2015.en_US
dc.identifier.epage348
dc.identifier.issn1823-8343
dc.identifier.issue2
dc.identifier.spage337
dc.identifier.urihttps://einspem.upm.edu.my/journal/fullpaper/vol9no2/11.%20ahmad%20fadly.pdf
dc.identifier.urihttps://oarep.usim.edu.my/handle/123456789/5311
dc.identifier.volume9
dc.language.isoenen_US
dc.publisherUniversiti Putra Malaysiaen_US
dc.relation.ispartofMalaysian Journal of Mathematical Sciencesen_US
dc.subjectDistributions; Fourier-laplace series; Laplace-beltrami operator; Localization; Riesz method; Sphereen_US
dc.titleOn the weak localization principle of the eigenfunction expansions of the laplace-beltrami operator by Riesz Methoden_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On the weak localization principle of the eigenfunction expansions of the laplace-beltrami operator by Riesz Method.pdf
Size:
272.43 KB
Format:
Adobe Portable Document Format