Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Web of Science_WoS
  4. Characterisation of cholinesterase from kidney tissue of Asian sea bass (Lates calcarifer) and its inhibition in presence of metal ions
 
  • Details
Options

Characterisation of cholinesterase from kidney tissue of Asian sea bass (Lates calcarifer) and its inhibition in presence of metal ions

Journal
Journal Of Environmental Biology
Date Issued
2017
Author(s)
Hayat, NM
Ahmad, SA
Shamaan, NA
Sabullah, MK
Shukor, MYA
Syed, MA
Khalid, A
Khalil, KA
Dahalan, FA
DOI
10.22438/jeb/38/3/MRN-987
Abstract
Aim : The cholinesterase (ChE) based inhibition studies from fish were investigated and presented here emerged to be one of the great potential biomarkers for heavy metals monitoring. Methodology : In this study, the capability of ChE extracted from the kidney of Lates calcarifer was assessed for of metal. ChE was purified through ammonium sulphate precipitation and ion exchange chromatography. Results : The purified enzyme gave 12 fold purification with the recovery of 12.17% with specific activity of 2.889 U mg(-1). The Michaelis-Menten constant (K-m) and V-max value obtained was 0.1426 mM and 0.0217 mu mol min(-1)mg(-1), respectively. The enzyme has the ability to hydrolyse acetylthiocholine iodide (ATC) at a faster rate compared to other two synthetic substrates, propionylthiocholine iodide (PTC) and butyrylthiocholine iodide (BTC). ChE gave highest activity at 20-30 degrees C in Tris-HCI buffer pH 8.0. The results showed that cholinesterase from L. calcarifer kidney was very sensitive to sensitive to copper and lead after being tested argentum, arsenic, cadmium, chromium, copper, cobalt, mercury, nickel, lead and zinc. Interpretation : The effect of heavy metals studied on the activity of ChE differed from each other. The result of the study can be used as a tool for further developing a biomarker for the detection of heavy metals in aquatic ecosystems. In addition, the information can also be used for designing a kit, that would give a rapid and accurate result.
Subjects

Biomarker

Cholinesterase

Metal ions

Lates calcarifer

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia