Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Scopus
  4. Determination of Gaussian Integer Zeroes of F(x, z) = 2x 4 − z 3
 
  • Details
Options

Determination of Gaussian Integer Zeroes of F(x, z) = 2x 4 − z 3

Journal
Malaysian Journal Of Mathematical Sciences
Date Issued
2022
Author(s)
Shahrina Binti Ismail
Atan, K. A. M.
Sejas-Viscarra, D
Eshkuvatov, Z.4
DOI
10.47836/mjms.16.2.09
Abstract
In this paper the zeroes of the polynomial F(x, z) = 2x
4 −z
3
in Gaussian integers Z[i] are determined, a problem equivalent to finding the solutions of the Diophatine equation x
4 + y
4 = z
3
in Z[i], with a focus on the case x = y. We start by using an analytical method that examines the
real and imaginary parts of the equation F(x, z) = 0. This analysis sheds light on the general
algebraic behavior of the polynomial F(x, z) itself and its zeroes. This in turn allows us a deeper
understanding of the different cases and conditions that give rise to trivial and non-trivial solutions to F(x, z) = 0, and those that lead to inconsistencies. This paper concludes with a general
formulation of the solutions to F(x, z) = 0 in Gaussian integers. Results obtained in this work
show the existence of infinitely many non-trivial zeroes for F(x, z) = 2x
4 −z
3 under the general
form x = (1 + i)η
3
and c = −2η
4
for η ∈ Z[i].
Subjects

Gaussian integer; Dio...

File(s)
Loading...
Thumbnail Image
Name

Determination of Gaussian Integer Zeroes of F(x, z) = 2x -z.pdf

Size

1006.56 KB

Format

Adobe PDF

Checksum

(MD5):87f676d2049ebb23aec04cc34a0984a1

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia