Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Other Publications
  4. Numerical Solution of Dirichlet Boundary Domain Integro Differential Equation with Less Number of Collocation Points
 
  • Details
Options

Numerical Solution of Dirichlet Boundary Domain Integro Differential Equation with Less Number of Collocation Points

Journal
Applied Mathematical Sciences
Date Issued
2016
Author(s)
Nurul Akmal Mohamed
Nurul Farihan Mohamed
Nurul Huda Mohamed
Mohd Rozni Md Yusof
DOI
10.12988/ams.2016.6381
Abstract
In this paper, we show that we have two approaches in implementing of Boundary-Domain Integro-Differential Equation (BDIDE) associated to Dirichlet Boundary Value Problem (BVP) for an elliptic Partial Differential Equation (PDE) with a variable coefficient. One way is by choosing the collocation points at all nodes i.e. on the boundary and interior domain. The other approach is choosing the collocation points for the interior nodes only. We present the numerical implementation of the BDIDE associated to Dirichlet BVP for an elliptic PDE with a variable coefficient by using the second approach. The BDIDE is consisting of several integrals that exhibit singularities. Generally, the integrals are evaluated by using Gauss- Legendre quadrature formula. Our numerical results show that the use of semi-analytic method gives high accuracy results. The discretized BDIDE yields a system of equations. We then apply by a direct method i.e. LU decomposition method to solve the systems of equations. In all the test domains, we present the relative errors of the solutions and the relative error for the gradient.
Subjects

Direct united boundar...

File(s)
Loading...
Thumbnail Image
Name

Numerical Solution of Dirichlet Boundary Domain Integro Differential Equation with Less Number of Collocation Points.pdf

Size

629.69 KB

Format

Adobe PDF

Checksum

(MD5):48bde54d1e92be5e6953f13bec2a0d9a

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia