Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Scopus
  4. Performance Of Shufflenet And Vgg-19 Architectural Classification Models For Face Recognition In Autistic Children
 
  • Details
Options

Performance Of Shufflenet And Vgg-19 Architectural Classification Models For Face Recognition In Autistic Children

Journal
International Journal on Advanced Science, Engineering and Information Technology
ISSN
2088-5334
Date Issued
2023
Author(s)
Melinda Melinda
Maulisa Oktiana
Yudha Nurdin
Indah Pujiati
Muhammad Irhamsyah
Nurlida Basir 
Universiti Sains Islam Malaysia 
DOI
10.18517/ijaseit.13.2.18274
Abstract
This study discusses the face recognition of children with special needs, especially those with autism. Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder that affects social skills, ways of interacting, and communication disorders. Facial recognition in autistic children is needed to help detect autism quickly to minimize the risk of further complications. There is extraordinarily little research on facial recognition of autistic children, and the resulting system is not fully accurate. This research proposes using the Convolution Neural Network (CNN) model using two architectures: ShuffleNet, which uses randomization channels, and Visual Geometry Group (VGG)-19, which has 19 layers for the classification process. The research object used in the face recognition system is secondary data obtained through the Kaggle site with a total of 2,940 image data consisting of images of autism and non-autism. The faces of autistic children are visually difficult to distinguish from those of normal children. Therefore, this system was built to recognize the faces of people with autism. The method used in this research is applying the CNN model to autism face recognition through images by comparing two architectures to see their best performance. Autism and non-autism data are grouped into training data, 2,540, and test data, as much as 300. In the training stage, the data was validated using validation data consisting of 50 autism image data and 50 non-autism image data. The experimental results show that the VGG-19 has high accuracy at 98%, while ShuffleNet is 88%.
Subjects

Face recognition syst...

autism

Convolutional Neural ...

ShuffleNet

VGG-19.

File(s)
Loading...
Thumbnail Image
Name

Performance of ShuffleNet and VGG-19 Architectural Classification Models for Face Recognition in Autistic Children

Type

main article

Size

1.27 MB

Format

Adobe PDF

Checksum

(MD5):3505acf15a5ca52cdd91523ee61d60c4

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia