Publication:
Modelling Brain Activations And Connectivity of Pain Modulated By Having A Loved One Nearby

No Thumbnail Available

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Amer Inst Physics

Research Projects

Organizational Units

Journal Issue

Abstract

This study is to model the connectivity between activated areas in the brain associated with pain responses in the presence and absence of a loved one. We used Th:YAG laser targeted onto the dorsum of the right hand of 17 Malay-female participants (mean age 20.59; SD 2.85 years) in two conditions: (1) in the absence of a loved one in the functional magnetic resonance imaging (fMRI) room (Alone condition), and (2) in the presence of a loved one (Support condition). The laser-induced pain stimuli were delivered according to an fMRI paradigm utilising blocked design comprising 15 blocks of activity and 15 blocks of rest. Brain activations and connectivity were analysed using statistical parametric mapping (SPM), dynamic causal modelling (DCM) and Bayesian model selection (BMS) analyses. Individual responses to pain were found to be divided into two categories: (1) Love Hurts (participants who reported more pain in the presence of a loved one) involved activations in thalamus (THA), parahippocampal gyrus (PHG) and hippocampus (HIP); and (2) Love Heals (participants who reported less pain in the presence of a loved one) involved activations in all parts of cingulate cortex. BMS showed that Love Heals could be represented by a cortical network involving the area of anterior cingulate cortex (ACC), middle cingulate cortex (MCC) and posterior cingulate cortex (PCC) in the intrinsic connectivity of ACC -> PCC -> MCC and ACC -> MCC. There was no optimal model to explain the increase in pain threshold when accompanied by the loved one in Love Hurts. The present study reveals a new possible cortical network for the reduction of pain by having a loved one nearby

Description

Keywords

Citation