Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Other Publications
  4. Millimetre-Wave Propagation Channel Based on NYUSIM Channel Model With Consideration of Rain Fade in Tropical Climates
 
  • Details
Options

Millimetre-Wave Propagation Channel Based on NYUSIM Channel Model With Consideration of Rain Fade in Tropical Climates

Journal
IEEE Access
Date Issued
2021
Author(s)
Asma Ali Budalal
Ibraheem Shayea
Md. Rafiqul Islam
Marwan Hadri Azmi
Hafizal Mohamad 
Universiti Sains Islam Malaysia 
Sawsan Ali Saad
Yousef Ibrahim Daradkeh
DOI
10.1109/ACCESS.2021.3135382
Abstract
The impact of atmospheric attenuation on wireless communication links is much more severe and complicated in tropical regions. That is due to the extreme temperatures, intense humidity, foliage and higher precipitation rain rates with large raindrop sizes. This paper investigates the propagation of the mm-waves at the 38 GHz link based on real measurement data collected from outdoor microcellular systems in Malaysia. The rainfall rate and received signal level have been measured simultaneously in 1-minute time intervals for one year over a 300 m path length. The rain attenuation distributions at different percentages of exceedance time have been compared with the modified distance factor of the ITU-R P.530-17 model. The average link availability calculated with the measured rain rates has been analysed. Additionally, the key propagation channel parameters such as the path loss, path loss exponent, Rician K-factor, root mean square, delay spread and received power have been investigated considering the rain attenuation. These propagation channel parameters have been analysed using MATLAB software and explained with the help of the latest NYUSIM channel model software package (Version 2.0). The analysis results have been classified considering rain attenuation, antenna setup, link distances, antenna height and antenna gain. The outcomes revealed that the rain fade predicted by applying the modified distance factor provides high consistency with the measured fade in Malaysia and several available measurements from different locations. The large-scale path loss model in the NYUSIM simulation result was around 126.23 dB by considering the rain attenuation effects on the 300m path length. This work shows that the NYUSIM channel model offers more accurate rendering results of path loss for omnidirectional and directional antenna transmissions without rain fade. This study proves that the ability to provide good coverage and ultra-reliable communication for outdoor and outdoor-to-indoor applications during rain in tropical regions must be sufficiently addressed.
Subjects

Millimetre-wave, prop...

File(s)
Loading...
Thumbnail Image
Name

232. Millimetre-wave Propagation Channel Based On Nyusim Channel Model With Consideration Of Rain Fade In Tropical Climates.pdf

Size

1.61 MB

Format

Adobe PDF

Checksum

(MD5):10a23d61b429d7329bb86ca2a61e25c8

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia