Publication: Construction of Cubature Formula for Double Integration with Algebraic Singularity by Spline Polynomial
No Thumbnail Available
Date
2015
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
IEEE
Abstract
In this note, singular integration problems of the form H alpha(h) = integral integral(Omega) h(x,y)/vertical bar(x) over bar - (x) over bar (0)vertical bar(2-alpha)dA, 0 <= alpha <= 1, where Omega = [a(1), a(2)] x [b(1), b(2)], (x) over bar = (x, y) is an element of Omega and fixed point (x) over bar (0) = (x(0), y(0)) is an element of Omega; is considered. The density function h (x, y) is assumed given, continuous and smooth on the rectangle Omega and belong to the class of functions C-2,C-alpha(Omega). Cubature formula for double integrals with algebraic singularity on a rectangle is constructed using the modified spline function S-Omega( P) of type (0, 2). Highly accurate numerical results for the proposed method is given for both tested density function h (x, y) as linear, quadratic and absolute value functions. The results are in line with the theoretical findings.