Publication:
A Fusion Of Discrete Wavelet Transform-based And Time-domain Feature Extraction For Motor Imagery Classification

dc.contributor.authorFouziah Md Yassin
dc.contributor.authorNorita Md Norwawi
dc.contributor.authorNor Azila Noh
dc.contributor.authorAfishah Alias
dc.contributor.authorSofina Tamam
dc.date.accessioned2024-07-13T15:15:26Z
dc.date.available2024-07-13T15:15:26Z
dc.date.issued2024
dc.date.submitted2024-6-26
dc.descriptionJordanian Journal of Computers and Information Technology (JJCIT), Volume 10 Issue 2 Page (108–122)
dc.description.abstractA motor imagery (MI)-based brain-computer interface (BCI) has performed successfully as a control mechanism with multiple electroencephalogram (EEG) channels. For practicality, fewer EEG channels are preferable. This paper investigates a single-channel EEG signal for MI. However, there are insufficient features that can be extracted due to a single-channel EEG signal being used in one region of the brain. An effective feature extraction technique plays a critical role in overcoming this limitation. Therefore, this study proposes a fusion of discrete wavelet transform (DWT)-based and time-domain feature extraction to provide more relevant information for classification. The highest accuracy obtained on the BCI Competition III (IVa) dataset is 87.5% with logistic regression (LR) while the OpenBMI dataset attained the highest accuracy of 93% with support vector machine (SVM) as the classifier. Addressing the potential of enhancing the performance of a single EEG channel located on the forehead, the achieved result is relatively promising.
dc.identifier.citationFouziah Md Yassin , Norita Md Norwawi , Nor Azila Noh , Afishah Alias4 and Sofina Tamam A Fusion Of Discrete Wavelet Transform-based And Time-domain Feature Extraction For Motor Imagery Classification. (2024). Jordanian Journal of Computers and Information Technology (JJCIT), 10(2), 108–122.
dc.identifier.epage122
dc.identifier.issn2415-1076
dc.identifier.issue2 (June)
dc.identifier.other823-38
dc.identifier.spage108
dc.identifier.urihttps://oarep.usim.edu.my/handle/123456789/20583
dc.identifier.volume10
dc.language.isoen_US
dc.publisherJordanian Journal of Computers and Information Technology
dc.relation.ispartofJORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY
dc.relation.issn2415-1076
dc.relation.journalJordanian Journal of Computers and Information Technology (JJCIT)
dc.subjectMotor imagery
dc.subjectFeature extraction
dc.subjectElectroencephalogram (EEG)
dc.subjectDiscrete wavelet transform
dc.subjectBrain-computer interface.
dc.titleA Fusion Of Discrete Wavelet Transform-based And Time-domain Feature Extraction For Motor Imagery Classification
dc.typetext::journal::journal article
dspace.entity.typePublication
oaire.citation.endPage122
oaire.citation.issue2
oaire.citation.startPage108
oaire.citation.volume10
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliationUniversiti Sains Islam Malaysia
oairecerif.author.affiliationUniversiti Sains Islam Malaysia
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliationUniversiti Sains Islam Malaysia

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A Fusion Of Discrete Wavelet Transform-based And Time-domain Feature Extraction For Motor Imagery Classification
Size:
1.21 MB
Format:
Adobe Portable Document Format

Collections