Publication:
Antibacterial drug release from a biphasic gel system: Mathematical modelling

dc.contributor.authorMichela Abramien_US
dc.contributor.authorSamuel Goloben_US
dc.contributor.authorFabio Pontellien_US
dc.contributor.authorGianluca Chiarappaen_US
dc.contributor.authorGabriele Grassien_US
dc.contributor.authorBeatrice Perissuttien_US
dc.contributor.authorDario Voinovichen_US
dc.contributor.authorNadia Haliben_US
dc.contributor.authorLuigi Murenaen_US
dc.contributor.authorGesmi Milcovichen_US
dc.contributor.authorMario Grassien_US
dc.date.accessioned2024-05-29T03:01:32Z
dc.date.available2024-05-29T03:01:32Z
dc.date.issued2019-03-25
dc.descriptionInternational Journal of Pharmaceutics Volume 559, 25 March 2019, Pages 373-381en_US
dc.description.abstractBacterial infections represent an important drawback in the orthopaedic field, as they can develop either immediately after surgery procedures or after some years. Specifically, in case of implants, they are alleged to be troublesome as their elimination often compels a surgical removal of the infected implant. A possible solution strategy could involve a local coating of the implant by an antibacterial system, which requires to be easily applicable, biocompatible and able to provide the desired release kinetics for the selected antibacterial drug. Thus, this work focusses on a biphasic system made up by a thermo-reversible gel matrix (Poloxamer 407/water system) hosting a dispersed phase (PLGA micro-particles), containing a model antibacterial drug (vancomycin hydrochloride). In order to understand the key parameters ruling the performance of this delivery system, we developed a mathematical model able to discriminate the drug diffusion inside micro-particles and within the gel phase, eventually providing to predict the drug release kinetics. The model reliability was confirmed by fitting to experimental data, proposing as a powerful theoretical approach to design and optimize such in situ delivery systems.en_US
dc.identifier.doihttps://doi.org/10.1016/j.ijpharm.2019.01.055
dc.identifier.epage381
dc.identifier.isbn1873-3476
dc.identifier.issn0378-5173
dc.identifier.scopusWOS:000459871500035
dc.identifier.spage373
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85061231772&doi=10.1016%2fj.ijpharm.2019.01.055&partnerID=40&md5=e79214b983e29d6d8bc41ac5d75332eb
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S0378517319300961?via%3Dihub
dc.identifier.urihttps://oarep.usim.edu.my/handle/123456789/11830
dc.identifier.volume559
dc.languageEnglish
dc.language.isoen_USen_US
dc.publisherElsevier Science BVen_US
dc.relation.ispartofInternational Journal Of Pharmaceuticsen_US
dc.sourceWeb Of Science (ISI)
dc.subjectGelsen_US
dc.subjectMathematical modellingen_US
dc.subjectAntibacterial drugen_US
dc.subjectOrthopaedic implantsen_US
dc.subjectMicro-particlesen_US
dc.titleAntibacterial drug release from a biphasic gel system: Mathematical modellingen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files