Publication:
Numerical conformal mapping and its inverse of unbounded multiply connected regions onto logarithmic spiral slit regions and straight slit regions

dc.contributor.authorYunus, AAMen_US
dc.contributor.authorMurid, AHMen_US
dc.contributor.authorNasser, MMSen_US
dc.date.accessioned2024-05-29T03:25:47Z
dc.date.available2024-05-29T03:25:47Z
dc.date.issued2014
dc.description.abstractThis paper presents a boundary integral equation method with the adjoint generalized Neumann kernel for computing conformal mapping of unbounded multiply connected regions and its inverse onto several classes of canonical regions. For each canonical region, two integral equations are solved before one can approximate the boundary values of the mapping function. Cauchy's-type integrals are used for computing the mapping function and its inverse for interior points. This method also works for regions with piecewise smooth boundaries. Three examples are given to illustrate the effectiveness of the proposed method.
dc.identifier.doi10.1098/rspa.2013.0514
dc.identifier.issn1364-5021
dc.identifier.issue2162
dc.identifier.scopusWOS:000332393700005
dc.identifier.urihttps://oarep.usim.edu.my/handle/123456789/12027
dc.identifier.volume470
dc.languageEnglish
dc.language.isoen_US
dc.publisherRoyal Socen_US
dc.relation.ispartofProceedings Of The Royal Society A-Mathematical Physical And Engineering Sciences
dc.sourceWeb Of Science (ISI)
dc.subjectnumerical conformal mappingen_US
dc.subjectunbounded multiply connected regionsen_US
dc.subjectadjoint generalized Neumann kernelen_US
dc.titleNumerical conformal mapping and its inverse of unbounded multiply connected regions onto logarithmic spiral slit regions and straight slit regions
dc.typeArticleen_US
dspace.entity.typePublication

Files