Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Scopus
  4. Statistical analysis of photovoltaic and wind power generation
 
  • Details
Options

Statistical analysis of photovoltaic and wind power generation

Journal
Journal of Energy Markets
Date Issued
2018
Author(s)
Ibrahim N.A.
DOI
10.21314/JEM.2018.178
Abstract
In this paper, we do a comparison between maximal and daily average production of photovoltaic (PV) and wind energy based on a transmission system operator in Germany using statistical analysis with different seasonality functions. We adopt sun intensity as a seasonal function for PV and a trigonometric function for wind, while the deseasonalized data is modeled by an autoregressive process. The stochastic component of both energies is relatively well captured by a skew normal distribution. Further, a weak anticorrelation between residuals of PV and wind is found, which leads to the complexity of balancing supply of renewable energy. No clear copula pattern is detected between transformed residuals, but it exhibits seasonality in the dependence. We can exploit this feature as a risk management strategy, such as quanto options, for nonrenewable energy producers to hedge against high renewable energy generation. � 2018 Infopro Digital Risk (IP) Limited.
Subjects

Autoregressive proces...

Copula

Photovoltaic power pr...

Quanto options

Skew normal distribut...

Wind power production...

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia