Publication:
Influence of hydrogen and various carbon monoxide concentrations on reduction behavior of iron oxide at low temperature

dc.FundingDetailsMinistry of Higher Education, Malaysia: ST-2018-005,�STGL-008-2012,�BKBP-FST-K003323-2014
dc.FundingDetailsAuthors would like to thanks Ministry of Higher Education, Malaysia and Universiti Kebangsaan Malaysia for funding this project under research grant number ST-2018-005 , BKBP-FST-K003323-2014 , STGL-008-2012 and Centre of Research and Innovation Management (CRIM), UKM, Malaysia for the instruments facilities.
dc.contributor.affiliationsFaculty of Science and Technology
dc.contributor.affiliationsUniversiti Kebangsaan Malaysia (UKM)
dc.contributor.affiliationsUniversiti Sains Islam Malaysia (USIM)
dc.contributor.affiliationsUniversiti Teknologi MARA (UiTM)
dc.contributor.affiliationsUniversiti Pertahanan Nasional Malaysia (UPNM)
dc.contributor.authorAbu Tahari M.N.en_US
dc.contributor.authorSalleh F.en_US
dc.contributor.authorTengku Saharuddin T.S.en_US
dc.contributor.authorDzakaria N.en_US
dc.contributor.authorSamsuri A.en_US
dc.contributor.authorMohamed Hisham M.W.en_US
dc.contributor.authorYarmo M.A.en_US
dc.date.accessioned2024-05-28T08:36:22Z
dc.date.available2024-05-28T08:36:22Z
dc.date.issued2019
dc.description.abstractThe aims of this study are to produce Fe3O4 from Fe2O3 using hydrogen (H2) and carbon monoxide (CO) gases by focusing on the influence of these gases on reduction of Fe2O3 to Fe3O4 at low temperature (below 500 °C). Low reduction temperature behavior was investigated by using temperature programmed reduction (TPR) with the presence of 20% H2/N2, 10% CO/N2, 20% CO/N2 and 40% CO/N2. The TPR results indicated that the first reduction peak of Fe2O3 at low temperature appeared faster in CO atmosphere compared to H2. Furthermore, reducibility of first stage reduction could be improved when increasing CO concentration and reduction rate were followed the sequence as: 40% CO > 20% CO > 10% CO > 10% H2. All reduction peaks were shifted to higher temperature when the CO concentration was reduced. Although, initial reduction by H2 occurred slower (first peak appeared at higher temperature, 465 °C) compared to CO, however, it showed better reduction with Fe2O3 fully reduced to Fe at temperature below 800 °C. Meanwhile, complete reduction happened at temperature above 800 °C in 10% and 20% CO/N2. Thermodynamic calculation revealed that CO acts as a better reducer than H2 as the enthalpy change of reaction (ΔHr) is more exothermic than H2 and the change in Gibbs free energy (ΔG) at 500 °C is directed to more spontaneous reaction in converting Fe2O3 to Fe3O4. Therefore, formation of magnetite at low temperature was thermodynamically more favorable in CO compared to H2 atmosphere. XRD analysis explained the formation of smaller crystallite size of magnetite by H2 whereas reduction of CO concentration from 40, 20 to 10% enhanced the growth of highly crystalline magnetite (31.3, 35.5 and 39.9 nm respectively). All reductants were successfully transformed Fe2O3 → Fe3O4 at the first reduction peak except for 10% CO/N2 as there was a weak crystalline peak due to remaining unreduced Fe2O3. Overall, less energy consumption needed in reducing Fe2O3 to Fe3O4 by CO. This proved that CO was enhanced the formation of magnetite, encouraged formation of highly crystalline magnetite in more concentrated CO, considered better reducing agent than H2 and these are valid at lower temperature.en_US
dc.description.natureFinalen_US
dc.identifier.CODENIJHED
dc.identifier.doi10.1016/j.ijhydene.2018.09.186
dc.identifier.epage20759
dc.identifier.issn3603199
dc.identifier.issue37
dc.identifier.scopus2-s2.0-85055576910
dc.identifier.spage20751
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85055576910&doi=10.1016%2fj.ijhydene.2018.09.186&partnerID=40&md5=f89080db37b1ba916e184b971c8c807e
dc.identifier.urihttps://oarep.usim.edu.my/handle/123456789/9153
dc.identifier.volume44
dc.languageEnglish
dc.language.isoen_USen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofInternational Journal of Hydrogen Energy
dc.sourceScopus
dc.subjectCarbon monoxideen_US
dc.subjectHematiteen_US
dc.subjectHydrogenen_US
dc.subjectMagnetiteen_US
dc.subjectReductionen_US
dc.titleInfluence of hydrogen and various carbon monoxide concentrations on reduction behavior of iron oxide at low temperatureen_US
dc.title.alternativeInt J Hydrogen Energyen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Collections