Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Scopus
  4. Crytojacking Classification based on Machine Learning Algorithm
 
  • Details
Options

Crytojacking Classification based on Machine Learning Algorithm

Journal
Journal of Physics: Conference Series
Date Issued
2020
Author(s)
Mansor W.N.A.B.W.
Ahmad A.
Zainudin W.S.
Madihah Mohd Saudi 
Universiti Sains Islam Malaysia 
Kama M.N.
DOI
10.1145/3390525.3390537
Abstract
The rise of cryptocurrency has resulted in a number of concerns. A new threat known as cryptojacking" has entered the picture where cryptojacking malware is the trend for future cyber criminals, who infect computers, install cryptocurrency miners, and use stolen information from victim databases to set up wallets for illicit funds transfers. Worst by 2020, researchers estimate there will be 30 billion of IoT devices in the world. Majority of the devices are highly vulnerable to simple attacks based on weak passwords and unpatched vulnerabilities and poorly monitored. Thus it is the best projection that IoT become a perfect target for cryptojacking malwares. There are lacks of study that provide in depth analysis on cryptojacking malware especially in the classification model. As IoT devices requires small processing capability, a lightweight model are required for the cryptojacking malware detection algorithm to maintain its accuracy without sacrificing the performance of other process. As a solution, we propose a new lightweight cryptojacking classifier model based on instruction simplification and machine learning technique that can detect the cryptojacking classification algorithm. This research aims to study the features of existing cryptojacking classification algorithm, to enhanced existing algorithm and to evaluate the enhanced algorithm for cryptojacking malware classification. The output of this research will be significant used in detecting cryptojacking malware attacks that benefits multiple industries including cyber security contractors, oil and gas, water, power and energy industries which align with the National Cyber Security Policy (NCSP) which address the risks to the Critical National Information Infrastructure (CNII). � 2020 ACM.
Subjects

Classification

Cryptojacking

Cryptomining

Machine learning

Malicious software

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia