Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Other Publications
  4. Ordered Logistic Regression With Artificial Neural Network Models For Variable Selection For\r\nPrediction Of Hypertension Patient Outcomes
 
  • Details
Options

Ordered Logistic Regression With Artificial Neural Network Models For Variable Selection For\r\nPrediction Of Hypertension Patient Outcomes

Journal
Sapporo Medical Journal
Date Issued
2020
Author(s)
Farah Muna Mohamad Ghazali
Wan Muhamad Amir W Ahmad
Mohamad Arif Awang Nawi
Nor Farid Mohd Noor
Nur FatihaGhazalli
NorAzlida Aleng
Mohamad Shafiq Mohd Ibrahim
Nurfadhlina Abdul Halim
Abstract
The purpose of this study is to demonstrate the best strategy for the variable selection, using the developed Ordered Logistic Regression (OLR) and Multilayer Perceptron Neural Network (MLP). At the first stage, all the selected variables will be a screen for their important relationship point of view through ordered logistics regression and bootstrap methodology. After considering for 1500 of the bootstrapping methods, it was found that smoking factor, total cholesterol factor, and triglycerides come to a significant relationship to the level of hypertension. By considering the level of significance of 0.25 for ordered logistic regression, these three variables are being selected and used for the input of the MLP model. The performance of MLP was evaluated through the Predicted Mean Square Error (PMSE) of the neural network for the (MSE-forecasts the Network). PMSE is used as a measurement of how far away from our predictions are from the real data. The smallest MSE from MLP, indicate the best combination of variables selection in the model. In this research paper, we also provide the R syntax for OLR and MLP better illustration.
Subjects

Multilayer Perceptron...

File(s)
Loading...
Thumbnail Image
Name

Ordered logistic regression with artificial neural network models for variable selection for prediction of hypertension patient outcomes.pdf

Size

438.89 KB

Format

Adobe PDF

Checksum

(MD5):2c8b30f560365582dc39e1c1a19e818b

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia