Publication:
Electrical, Thermal, and Structural Characterization of Plant-Based 3D Printed Gel Polymer Electrolytes for Future Electrochemical Applications

dc.contributor.authorMuhammad Afiq Hazizi Mahamooden_US
dc.contributor.authorMuhammad Faishal Norjelien_US
dc.contributor.authorAhmad Adnan Abu Bakaren_US
dc.contributor.authorShahino Mah Abdullahen_US
dc.contributor.authorNizam Tamcheken_US
dc.contributor.authorIkhwan Syafiq Mohd Nooren_US
dc.contributor.authorAla H. Sabeehen_US
dc.contributor.authorAhmad Fudy Alforidien_US
dc.contributor.authorIbrahim H. Khawajien_US
dc.contributor.authorMohd Ifwat Mohd Ghazalien_US
dc.date.accessioned2024-05-28T06:48:00Z
dc.date.available2024-05-28T06:48:00Z
dc.date.issued2023
dc.date.submitted2024-2-19
dc.descriptionVolume 15 Issue 24en_US
dc.description.abstractIn this work, a plant-based resin gel polymer electrolyte (GPE) was prepared by stereolithography (SLA) 3D printing. Lithium perchlorate (LiClO4) with a concentration between 0 wt.% and 25 wt.% was added into the plant-based resin to observe its influence on electrical and structural characteristics. Fourier transform infrared spectroscopy (FTIR) analysis showed shifts in the carbonyl, ester, and amine groups, proving that complexation between the polymer and LiClO4 had occurred. GPEs with a 20 wt.% LiClO4 (S20) showed the highest room temperature conductivity of 3.05 × 10−3 S cm−1 due to the highest number of free ions as determined from FTIR deconvolution. The mobility of free ions in S20 electrolytes was also the highest due to greater micropore formation, as observed via field emission scanning electron microscopy (FESEM) images. Transference number measurements suggest that ionic mobility plays a pivotal role in influencing the conductivity of S20 electrolytes. Based on this work, it can be concluded that the plant-based resin GPE with LiClO4 is suitable for future electrochemical applications.en_US
dc.identifier.citationMahamood, M. A. H., Norjeli, M. F., Abu Bakar, A. A., Abdullah, S. M., Tamchek, N., Mohd Noor, I. S., Sabeeh, A. H., Alforidi, A. F., Khawaji, I. H., & Mohd Ghazali, M. I. (2023). Electrical, Thermal, and Structural Characterization of Plant-Based 3D Printed Gel Polymer Electrolytes for Future Electrochemical Applications. Polymers, 15(24), 4713. https://doi.org/10.3390/polym15244713en_US
dc.identifier.doi10.3390/polym15244713
dc.identifier.epage24
dc.identifier.issn2073-4360
dc.identifier.issue24
dc.identifier.spage1
dc.identifier.urihttps://www.mdpi.com/2073-4360/15/24/4713
dc.identifier.urihttps://oarep.usim.edu.my/handle/123456789/7781
dc.identifier.volume15
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.relation.ispartofPolymersen_US
dc.subject3D printing; stereolithography (SLA); gel polymer electrolyte (GPE); lithium perchlorate (LiClO4); plant-based polymeren_US
dc.titleElectrical, Thermal, and Structural Characterization of Plant-Based 3D Printed Gel Polymer Electrolytes for Future Electrochemical Applicationsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Electrical, Thermal, and Structural Characterization of Plant-Based 3D Printed Gel Polymer Electrolytes for Future Electrochemical Applications.pdf
Size:
9.08 MB
Format:
Adobe Portable Document Format