Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Scopus
  4. Markov-modulated bernoulli-based performance analysis for gentle BLUE and BLUE algorithms under bursty and correlated traffic
 
  • Details
Options

Markov-modulated bernoulli-based performance analysis for gentle BLUE and BLUE algorithms under bursty and correlated traffic

Journal
Open Access
Journal of Computer Science
Date Issued
2016
Author(s)
Alsaaidah A.
Mohd Zalisham Jali 
Universiti Sains Islam Malaysia
Fadzli M.
Abdel-Jaber H.
DOI
10.3844/jcssp.2016.289.299
Abstract
This paper presents a performance study for Gentle BLUE (GB) under the bursty and correlated properties of aggregated network traffic. The Bernoulli Process (BP) fails to represent the properties of aggregated correlated and bursty traffic, so instead of that, MMBP has been used. MMBP is A 2D discrete-time Markov chain modeling for GB algorithm with two traffic classes, each with its own parameters. The proposed model is compared with the GB that uses the BP as a source model (GB-BP) and original BLUE that uses the BP (BLUE-BP) and MMBP (BLUE-MMBP-2) as source model. The evaluation is conducted in term of queuing waiting time, mean queue length, throughput, packet loss and dropping probability. When congestion (e.g., heavy congestion) occurs, the results show that GBMMBP- 2 provides the bestmean queue length, queuing time and packet loss among the compared methods. � 2016 Adeeb Alsaaidah, Mohd Zalisham, Mohd Fadzli and Hussein Abdel-Jaber.
Subjects

Congestion control

Gentle BLUE

Markov modulated bern...

Performance evaluatio...

Queue management

File(s)
Loading...
Thumbnail Image
Name

Markov-modulated bernoulli-based performance analysis for gentle BLUE and BLUE algorithms under bursty and correlated traffic.pdf

Size

441.33 KB

Format

Adobe PDF

Checksum

(MD5):5858b9fd980ad331e247ca58c5b86198

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia