Publication: Surface Modification Via Alginate-based Edible Coating For Enhanced Osmotic Dehydration Mass Transfer Of Ginger Slices
Loading...
Date
2022
Journal Title
Journal ISSN
Volume Title
Publisher
Horizon e-Publishing Group
Abstract
Ginger has a high moisture content, which makes it highly susceptible to spoilage. Therefore, the shelf life can be extended through drying. In the drying process, osmotic dehydration is applied as pre-treatment due to its simple operation and energy-saving process for removing moisture from food. However, large solute gain during the osmotic dehydration has become the major challenge of this process as it has a negative impact on the final product. The edible coating is the key step to circumventing this issue. Alginate is a potential candidate for the coating material to enhance the mass transfer kinetics of the osmotic dehydration process. This study investigated the surface modification of ginger slices caused by the cross-linker calcium chloride and plasticizer glycerol on alginate coating using a Scanning Electron Microscope. Furthermore, the kinetics of water loss and solute gain were evaluated and modelling aspects were conducted. It was observed that the surface roughness of ginger coated with a combination of alginate, glycerol and calcium ions has reduced. This facilitated the mass transfer process, which was observed to have a high water loss and a lower solute gain. The Peleg model presented the best fitting model of mass transfer kinetics during osmotic dehydration of ginger slices. From this work, it can be deduced that alginate-based coating can be a promising pre-treatment step in the osmotic dehydration process.
Description
VOL. 10 NO. 1 (2023) (page 67-73)
Keywords
Ginger, alginate, coating, osmotic dehydration, mass transfer
Citation
Hissham MH, Kamarudin KH, Ramli A, Lani MN, Isa MINM, Salim NSM. Surface modification via alginate-based edible coating for enhanced osmotic dehydration mass transfer of ginger slices. Plant Sci. Today [Internet]. 2023 Jan. 1 [cited 2023 Mar. 8];10(1):67-73. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/1849