Publication:
The difference splitting scheme for hyperbolic systems with variable coefficients

dc.FundingDetailsUniversiti Sains Islam Malaysia,�USIM
dc.FundingDetailsThis work was supported by Universiti Sains Islam Malaysia (USIM) under RMC Research Grant Scheme (FRGS, 2018). Project code is USIM/FRGS/FST/055002/51118
dc.contributor.affiliationsFaculty of Science and Technology
dc.contributor.affiliationsNational University of Uzbekistan (NUUz
dc.contributor.affiliationsUniversiti Sains Islam Malaysia (USIM)
dc.contributor.authorAloev R.D.en_US
dc.contributor.authorEshkuvatov Z.K.en_US
dc.contributor.authorKhudoyberganov M.U.en_US
dc.contributor.authorNematova D.E.en_US
dc.date.accessioned2024-05-28T08:41:27Z
dc.date.available2024-05-28T08:41:27Z
dc.date.issued2019
dc.description.abstractIn the paper, we propose a systematic approach to design and investigate the adequacy of the computational models for a mixed dissipative boundary value problem posed for the symmetric t-hyperbolic systems. We consider a two-dimensional linear hyperbolic system with variable coefficients and with the lower order term in dissipative boundary conditions. We construct the difference splitting scheme for the numerical calculation of stable solutions for this system. A discrete analogue of the Lyapunov�s function is constructed for the numerical verification o f stability o f solutions for the considered problem. A priori estimate is obtained for the discrete analogue of the Lyapunov�s function. This estimate allows us to assert the exponential stability of the numerical solution. A theorem on the exponential stability of the solution of the boundary value problem for linear hyperbolic system and on stability of difference splitting scheme in the Sobolev spaces was proved. These stability theorems give us the opportunity to prove the convergence of the numerical solution. � 2019 by authors, all rights reserved.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.13189/ms.2019.070305
dc.identifier.epage89
dc.identifier.issn23322071
dc.identifier.issue3
dc.identifier.scopus2-s2.0-85071017777
dc.identifier.spage82
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85071017777&doi=10.13189%2fms.2019.070305&partnerID=40&md5=50d7e848d755d6716374f4f4ee3ef9e1
dc.identifier.urihttps://www.hrpub.org/download/20190730/MS5-13490602.pdf
dc.identifier.urihttps://oarep.usim.edu.my/handle/123456789/9296
dc.identifier.volume7
dc.languageEnglish
dc.language.isoen_USen_US
dc.publisherHorizon Research Publishingen_US
dc.relation.ispartofMathematics and Statisticsen_US
dc.sourceScopus
dc.subjectDifference schemeen_US
dc.subjectLyapunov functionen_US
dc.subjectMixed problemen_US
dc.subjectStabilityen_US
dc.titleThe difference splitting scheme for hyperbolic systems with variable coefficientsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The Difference Splitting Scheme For Hyperbolic Systems With Variable Coefficients.pdf
Size:
326.88 KB
Format:
Adobe Portable Document Format

Collections