Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Indexed Publication
  4. Inhibition Mechanism Of Silver Nanoparticle-kaempferol Against Methicillin-resistant Staphylococcus Aureus
 
  • Details
Options

Inhibition Mechanism Of Silver Nanoparticle-kaempferol Against Methicillin-resistant Staphylococcus Aureus

Journal
Arabian Journal of Chemistry
ISSN
1878-5352
Date Issued
2024
Author(s)
Nur Farah Atiqah Mohd Pazli
Universiti Sains Islam Malaysia 
Siti Aisyah Abd Ghafar
Universiti Sains Islam Malaysia 
Ariff Haikal Hairil Anuar
Universiti Sains Islam Malaysia 
Rohazila Mohamad Hanafiah 
Universiti Sains Islam Malaysia 
DOI
10.1016/j.arabjc.2023.105489
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a multidrug resistant strain, is known to cause a threat to public health due to its limited therapeutic treatment. Kaempferol (K) is a natural flavonoid that shows antibacterial activities toward MRSA, but its effectiveness is limited due to its low water solubility. However, poorly aqueous soluble drugs displayed better solubility through nano formulation. Hence, kaempferols were incorporated with silver nanoparticles (AgNPs) to enhance their solubility and antibacterial activity. Previous study showed that AgNPs incorporated with kaempferol (AgNPs-K) exhibited antibacterial activity against MRSA. However, the knowledge regarding the mechanism of action AgNPs-K against MRSA is still limited. The objective of the study is to unravel the inhibition mechanism of silver nanoparticles-kaempferol (AgNPs-K) on treated MRSA. The scanning electron microscopy (SEM) result showed significant difference in morphology between
treated and non-treated MRSA which suggest the effectiveness of the AgNPs-K. Non-treated MRSA has an oval shape while MRSA treated with AgNPs-K showed a disrupted cell wall with contents leakage. The transcriptomic profile analysis by Next Generation Sequencing (NGS) showed that various genes and pathways related to biofilm, virulent activity and glycolysis pathway are differently expressed, with 581 genes were downregulated and 641 were upregulated. The affected genes of icab, clfa and eno which involved in biofilm, clumping factor A
(virulent) and glycolysis pathway were validated by RT-PCR technique. The results were consistent with the NGS outcome. In conclusion, AgNPs-K possesses antibacterial activity against MRSA and its mechanism of action are reflected in the gene expression of biofilm pathway, virulent and glycolysis activity. Therefore, AgNPs-K can be suggested as a potential alternative to combat MRSA infection.
Subjects

Silver nanoparticles ...

File(s)
Loading...
Thumbnail Image
Name

Inhibition mechanism of silver nanoparticle-kaempferol against methicillin-resistant Staphylococcus aureus

Type

main article

Size

4.63 MB

Format

Adobe PDF

Checksum

(MD5):4d70b876e44894bbc8323653a234842a

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia