Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Other Publications
  4. An Analysis Of Various Algorithms For Text Spam Classification And Clustering Using Rapidminer And Weka
 
  • Details
Options

An Analysis Of Various Algorithms For Text Spam Classification And Clustering Using Rapidminer And Weka

Journal
International Journal of Computer Science & Information Security (IJCSIS)
Date Issued
2015
Author(s)
Zainal K.
Sulaiman N.F.
Jali M.Z.
Abstract
This paper reported and summarized findings of spam management for Short Message Service (SMS) which consists of classification and clustering of spam using two different tools, namely RapidMiner and Weka. By using the same dataset, which is downloaded from UCI, Machine Learning Repository, various algorithms used in classification and clustering in this simulation has been analysed comparatively. From the simulation, both tools giving the similar results that the same classifiers are the best for SMS spam classification and clustering which are outperformed than other algorithms.

.

Keywords- SMS spam; RapidMiner; Weka; Naïve Bayesian (NB); Support Vector Machine (SVM); k-Nearest Neighbour (kNN); K-Mean; Cobweb; Hierarchical clustering; spam classification; spam clustering.

.
Subjects

SMS spam;

RapidMiner;

Weka;

Naïve Bayesian (NB);

Support Vector Machin...

k-Nearest Neighbour (...

K-Mean; Cobweb;

Hierarchical clusteri...

spam classification;

spam clustering. .

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia