Publication: Automatic feature description of endometrioma in ultrasonic images of the ovary
dc.contributor.affiliations | Faculty of Engineering and Built Environment | |
dc.contributor.affiliations | Universiti Sains Islam Malaysia (USIM) | |
dc.contributor.author | Sahrim M. | en_US |
dc.contributor.author | Aziz A.N.A. | en_US |
dc.contributor.author | Wan Zakiah Wan Ismail | en_US |
dc.contributor.author | Ismail I. | en_US |
dc.contributor.author | Jamaludin J. | en_US |
dc.contributor.author | Balakrishnan S.R. | en_US |
dc.date.accessioned | 2024-05-28T08:24:24Z | |
dc.date.available | 2024-05-28T08:24:24Z | |
dc.date.issued | 2018 | |
dc.description.abstract | Endometriosis cyst or endometrium is commonly found in women with subfertility. Traditionally, medical technologies fail to detect the disease automatically and it is fully dependent on the doctors to determine the peritoneal disease where it may lead to inaccurate findings. A method of assessment may give more accurate detection without the need for surgical procedure, especially in monitoring disease recurrence. This will avoid surgical risk and will not delay the management. In this study, the feature description is developed using pattern recognition, involving image processing techniques; the ultrasonic images is used as input in which the region of interest of images, image segmentation, feature extraction are studied. � Penerbit UTHM. | |
dc.description.nature | Final | |
dc.identifier.citation | Wan Ismail, W. Z. (2018). Automatic feature description of Endometrioma in Ultrasonic images of the ovary. International Journal of Integrated Engineering, 10(1). Retrieved from https://publisher.uthm.edu.my/ojs/index.php/ijie/article/view/2507 | en_US |
dc.identifier.doi | 10.30880/ijie.2018.10.01.028 | |
dc.identifier.epage | 188 | |
dc.identifier.issn | 2229838X | |
dc.identifier.issue | 1 | |
dc.identifier.scopus | 2-s2.0-85053704240 | |
dc.identifier.spage | 186 | |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053704240&doi=10.30880%2fijie.xx.xx.xxxx.xx.xxxx&partnerID=40&md5=59e2993a65093a7ce3127ddbcb2c896c | |
dc.identifier.uri | https://publisher.uthm.edu.my/ojs/index.php/ijie/article/view/2507 | |
dc.identifier.uri | https://oarep.usim.edu.my/handle/123456789/8469 | |
dc.identifier.volume | 10 | |
dc.language | English | |
dc.language.iso | en_US | en_US |
dc.publisher | Penerbit UTHM | en_US |
dc.relation.ispartof | International Journal of Integrated Engineering | |
dc.source | Scopus | |
dc.subject | Endometrioma cysts | |
dc.subject | Image processing technique | |
dc.subject | Pattern recognition | |
dc.subject | Ultra-sonographic | |
dc.subject | Ultrasound scan | |
dc.title | Automatic feature description of endometrioma in ultrasonic images of the ovary | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Automatic feature description of Endometrioma in Ultrasonic images of the ovary.pdf
- Size:
- 475.01 KB
- Format:
- Adobe Portable Document Format