Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. USIM Journals
  3. Malaysian Journal of Science, Health & Technology (MJoSHT)
  4. SQL Injection Detection using Machine Learning: A Review
 
  • Details
Options

SQL Injection Detection using Machine Learning: A Review

Journal
Malaysian Journal of Science, Health & Technology (MJoSHT)
Date Issued
2024
Author(s)
Mohammed A M Oudah
Mohd Fadzli Marhusin 
Universiti Sains Islam Malaysia 
DOI
10.33102/mjosht.v10i1.368
Abstract
SQL injection attacks are critical security vulnerability exploitation in web applications, posing risks to data, if successfully executed, allowing attackers to gain unauthorised access to sensitive data. Due to the absence of a standardised structure, traditional signature-based detection methods face challenges in effectively detecting SQL injection attacks. To overcome this challenge, machine learning(ML)algorithms have emerged as a promising approach for detecting SQL injection attacks. This paper presents a comprehensive literature review on the utilisation of MLtechniques for SQL injection detection. The review covers various aspects, including dataset collection, feature extraction, training, and testing, with different MLalgorithms. The studies included in the review demonstrate high levels of accuracy in detecting attacks and reducing false positives.
Subjects

Cybersecurity; Machin...

File(s)
Loading...
Thumbnail Image
Name

SQL Injection Detection using Machine Learning A Review.pdf

Size

427.62 KB

Format

Adobe PDF

Checksum

(MD5):901c3b23998b639060cef3a6815d4a8f

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia