Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Other Publications
  4. The Study of Mechanical Properties of Poly(lactic) Acid Pla-based 3d Printed Filament under Temperature and Environmental Conditions
 
  • Details
Options

The Study of Mechanical Properties of Poly(lactic) Acid Pla-based 3d Printed Filament under Temperature and Environmental Conditions

Journal
Materials Today: Proceedings
Date Issued
2022
Author(s)
Ahmad Adnan Bin Abu Bakar
Muhammad Zulhilmi Bin Zainuddin
Ahmad Nurhelmy Bin Adam
Ikhwan Syafiq Bin Mohd Noor
Nizam Bin Tamchek
Muhammad Syafiq Bin Alauddin
Mohd Ifwat Bin Mohd Ghazali
DOI
10.1016/j.matpr.2022.06.198
Abstract
Recently, Industrial Revolution 4.0 has highlighted the key components that will shift the world into digitalization; cybersecurity, cloud computing, mobile technologies, machine to machine, advanced robotics, big data, Internet of Things (IoT), RFID technology, cognitive computing and additive manufacturing. Additive manufacturing or better known as 3D printing technology has captivated many researchers due to its many advantages. This study aims to focus on the influence of temperature on the physical properties of the 3D printed structure made from poly(lactic) acid (PLA) with 100% infill. The highest Young’s modulus at the value of 4.42 GPa was obtained with a slight deviation under other samples exposed at the temperature of 70 °C and 80 °C. It was found that the ultimate tensile strength of the 3D printed structure when being exposed at the temperature of 80 °C for a maximized duration of 10 days while the breakage/fracture limit was recorded on samples after the 13rd day exposure at the same temperature. Meanwhile, the highest strain was achieved at 8.04% also during the 13rd day but at 70 °C. In conclusion, post-heat treatment has minimal effect on the Young’s modulus of 3D printed PLA but it was largely effecting the fracture limit of the structure. Therefore, heat treatment at temperature closed to the glass transition temperature of PLA polymer improved the adhesion strength between the printed layer thus enhancing the durability of the specimen under load conditions.
Subjects

Additive manufacturin...

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia