Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Scopus
  4. Comparative adsorption isotherm for beryllium oxide/ iron (Iii) oxide toward co2 adsorption and desorption studies
 
  • Details
Options

Comparative adsorption isotherm for beryllium oxide/ iron (Iii) oxide toward co2 adsorption and desorption studies

Journal
Mini-Reviews in Medicinal Chemistry
Date Issued
2020
Author(s)
Lahuri A.H.
Yarmo M.A.
Abu Tahari M.N.
Marliza T.S.
Tengku Saharuddin T.S.
Wun Fui M.L.
Dzakaria N.
DOI
10.4028/www.scientific.net/MSF.1010.361
Abstract
Surface modification of Fe2O3 by adding BeO was synthesized and calcined at different temperatures of 200-600 °C. The adsorbents were characterized by using XRD, N2 adsorption-desorption isotherm prior to performing CO2 adsorption and desorption studies. The CO2 adsorption data were analyzed using adsorption isotherm models such as Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich. BeO/Fe2O3-300 that calcined at 300 °C showed the most efficient adsorbent with physisorption and chemisorption were measured at 5.85 and 45.88 mg/g respectively. The CO2 adsorption notably best fitted with Freundlich isotherm with R2 = 0.9897 and calculated adsorption capacity closest to experimental data. This implies the CO2 adsorption process was governed by multilayer adsorption on the heterogeneous surface of the adsorbent. The mean free energy of adsorption (E=3.536 kJ/mol) from Dubinin-Radushkevich and heat of adsorption (bT=3.219 kJ/mol) from the Temkin model support that the adsorption process is physical phenomena. © 2020 Trans Tech Publications Ltd, Switzerland.
Subjects

Adsorption isotherm

Beryllium oxide

CO2 capture

Iron(III) oxide

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia