Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Scopus
  4. Reserve Fund Optimatization Model For Digital Banking Transaction Risk With Extreme Value-at-risk Constraints
 
  • Details
Options

Reserve Fund Optimatization Model For Digital Banking Transaction Risk With Extreme Value-at-risk Constraints

Journal
Mathematics
Date Issued
2023
Author(s)
Moch Panji Agung Saputra
Diah Chaerani
Sukono
Mazlynda Md Yusuf 
Universiti Sains Islam Malaysia 
DOI
10.3390/math11163507
Abstract
The digitalization of bank data and financial operations creates a large risk of loss. Losses due to the risk of errors in the bank’s digital system need to be mitigated through the readiness of reserve funds. The determination of reserve funds needs to be optimized so that there is no large excess of reserve funds. Then the rest of the reserve fund allocation can be used as an investment fund by the bank to obtain additional returns or profits. This study aims to optimize the reserve fund allocation for digital banking transactions. In this case, the decision variable is value reserved based on potential loss of each digital banking, and the objective function is defined as minimizing reserve fund allocation. Furthermore, some conditions that become limitation are rules of Basel II, Basel III, and Article 71 paragraph 1 of the Limited Liability Company Law. Since the objective function can be expressed as a linear function, in this paper, linear programming optimization approach is thus employed considering Extreme Value-at-Risk (EVaR) constraints. In the use of EVaR approach in the digital banking problem, it is found that the loss meets the criteria of extreme data based on the Generalized Pareto Distribution (GPD). The strength of reserve funds using linear programming
optimization with EVaR constraints is the consideration of potential losses from digital banking risks that are minimized so that the allocation of company funds becomes optimum. While the determination of reserve funds with a standard approach only considers historical profit data, this can result in excessive reserve funds because they are not considered potential risks in the future period. For the numerical experiment, the following risk data are used in the modeling, i.e., the result of a sample simulation of digital banking losses due to the risk of system downtime, system timeout, external failure, and operational user failure. Therefore, the optimization model with EVaR constraints produces an optimal reserve fund value, so that the allocation of bank reserve funds becomes efficient. This provides a view for banking companies to avoid the worst risk, namely collapse due to unbalanced mandatory reserve funds.
Subjects

digital banking; rese...

File(s)
Loading...
Thumbnail Image
Name

Reserve Fund Optimization Model for Digital Banking Transaction Risk with Extreme Value-at-Risk Constraints.pdf

Size

1.81 MB

Format

Adobe PDF

Checksum

(MD5):27ecbaa7bc3ec4247c7aa9d594887a81

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia