Publication: 2 point block backward difference method for solving Riccati type differential problems
dc.Conferencecode | 124740 | |
dc.Conferencedate | 10 August 2016 through 12 August 2016 | |
dc.Conferencename | 2nd International Conference on Mathematics, Engineering and Industrial Applications 2016, ICOMEIA 2016 | |
dc.FundingDetails | International Islamic University Malaysia: FRGS 14 142 0383 British Malaysian Institute, Universiti Kuala Lumpur | |
dc.FundingDetails | This paper has been supported by Intenational Islamic University Malaysia under the post-doctoral scheme, Fundamental Research Grant Shceme, Grant Number: FRGS 14 142 0383, Universiti Kuala Lumpur and Universiti Malaysia Perlis under the scholarship of its fellowship scheme. | |
dc.citedby | 2 | |
dc.contributor.affiliations | Faculty of Economics and Muamalat | |
dc.contributor.affiliations | Universiti Sains Islam Malaysia (USIM) | |
dc.contributor.affiliations | International Islamic University Malaysia (IIUM) | |
dc.contributor.affiliations | Universiti Putra Malaysia (UPM) | |
dc.contributor.affiliations | Universiti Malaysia Perlis (UniMAP) | |
dc.contributor.affiliations | Universiti Kuala Lumpur (UniKL) | |
dc.contributor.author | Rasedee A.F.N.B. | en_US |
dc.contributor.author | Sathar M.H.B.A. | en_US |
dc.contributor.author | Deraman F. | en_US |
dc.contributor.author | Ijam H.M. | en_US |
dc.contributor.author | Suleiman M.B. | en_US |
dc.contributor.author | Saaludin N.B. | en_US |
dc.contributor.author | Rakhimov A. | en_US |
dc.date.accessioned | 2024-05-29T01:54:48Z | |
dc.date.available | 2024-05-29T01:54:48Z | |
dc.date.issued | 2016 | |
dc.description.abstract | A two point block backward difference method is established to solve Riccati differential equations directly. Based on a predictor-corrector two point block backward difference method (2PBBD), a code is developed using a set of integration coefficients that eliminates the need to be calculated at every step change. The method requires calculating the integration coefficients only once in the beginning. The 2PBBD has an added advantage of a recurrence relationship between coefficients of different orders which provides a more elegant algorithm. The recurrence relationship between coefficients also reduces the computational cost. � 2016 Author(s). | |
dc.description.nature | Final | en_US |
dc.editor | Khazali K.A.M.Daud W.S.W.Amin N.A.M.Zaimi W.M.K.A.W.Yusuf Y.N.A.Abdullah N.Aziz N.H.A.Rusli N.Masnan M.J.Yahya Z. | en_US |
dc.identifier.ArtNo | 30005 | |
dc.identifier.doi | 10.1063/1.4965125 | |
dc.identifier.isbn | 9780740000000 | |
dc.identifier.issn | 0094243X | |
dc.identifier.scopus | 2-s2.0-84997447803 | |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84997447803&doi=10.1063%2f1.4965125&partnerID=40&md5=b6875bd91395263c946b17b5f260b9d8 | |
dc.identifier.uri | https://oarep.usim.edu.my/handle/123456789/9551 | |
dc.identifier.volume | 1775 | |
dc.language | English | |
dc.language.iso | en_US | en_US |
dc.publisher | American Institute of Physics Inc. | en_US |
dc.relation.ispartof | AIP Conference Proceedings | |
dc.source | Scopus | |
dc.title | 2 point block backward difference method for solving Riccati type differential problems | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |