Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Other Publications
  4. Implementations Of Boundary-Domain Integro-Differential Equation For Dirichlet BVP With Variable Coefficient
 
  • Details
Options

Implementations Of Boundary-Domain Integro-Differential Equation For Dirichlet BVP With Variable Coefficient

Journal
Jurnal Teknologi
Date Issued
2016
Author(s)
Nurul Akmal Mohamed
Nur Fadhilah Ibrahim
Mohd Rozni Md Yusof
Nurul Farihan Mohamed
Nurul Huda Mohamed
DOI
10.11113/jt.v7-0
Abstract
In this paper, we present the numerical results of the Boundary-Domain Integro-Differential Equation (BDIDE) associated to Dirichlet problem for an elliptic type Partial Differential Equation (PDE) with a variable coefficient. The numerical constructions are based on discretizing the boundary of the problem region by utilizing continuous linear iso-parametric elements while the domain of the problem region is meshed by using iso-parametric quadrilateral bilinear domain elements. We also use a semi-analytic method to handle the integration that exhibits logarithmic singularity instead of using Gauss-Laguare quadrature formula. The numerical results that employed the semi-analytic method give better accuracy as compared to those when we use Gauss-Laguerre quadrature formula. The system of equations that obtained by the discretized BDIDE is solved by an iterative method (Neumann series expansion) as well as a direct method (LU decomposition method). From our numerical experiments on all test domains, the relative errors of the solutions when applying semi-analytic method are smaller than when we use Gauss-Laguerre quadrature formula for the integration with logarithmic singularity. Unlike Dirichlet Boundary Integral Equation (BIE), the spectral properties of the Dirichlet BDIDE is not known. The Neumann iterations will converge to the solution if and only if the spectral radius of matrix operator is less than 1. In our numerical experiment on all the test domains, the Neumann series does converge. It gives some conclusions for the spectral properties of the Dirichlet BDIDE even though more experiments on the general Dirichlet problems need to be carried out.
Subjects

Boundary-domain integ...

File(s)
Loading...
Thumbnail Image
Name

Implementations Of Boundary-Domain Integro-Differential Equation For Dirichlet BVP With Variable Coefficient.pdf

Size

617.32 KB

Format

Adobe PDF

Checksum

(MD5):d5f10e32211b844d4fbb12d936fbecfb

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia