Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Scopus
  4. Comparative analysis of danger theory variants in measuring risk level for text spam messages
 
  • Details
Options

Comparative analysis of danger theory variants in measuring risk level for text spam messages

Journal
Advances in Intelligent Systems and Computing
Date Issued
2018
Author(s)
Zainal K.
Jali M.Z.
Hasan A.B.
DOI
10.1007/978-3-319-78753-4_11
Abstract
The issue of spam has been uprising since decades ago. Impact loss from various aspects has attacked the daily life most of us. Many approaches such as policy and guidelines establishment, rules and regulations enforcement, and even anti-spam tools installation appeared to be not enough to restrain the problem. To make things even worse, the spam�s recipients still easily get enticed and lured with the spam content. Hence, an advanced medium that acts as an implicit decision maker is desperately required to assist users to obstruct their eagerness responding against spam. The simulation of spam risk assessment in this paper is purposely to give some insights of how users can identify the imminent danger of received text spam. It is demonstrated by predicting the potential hazard with three different levels of risk (high, medium and low), according to its possible impact loss. A series of simulation has been conducted to visualize this concept using Danger Theory variants of Artificial Immune Systems (AIS), namely Dendritic Cell Algorithm (DCA) and Deterministic Dendritic Cell Algorithm (dDCA). The corpus of messages from UCI Machine Learning Repository has been deployed to illustrate the analysis. The outcome of these simulations verified that dDCA has consistently outperformed DCA in precisely assessing the risk level with severity concentration value for text spam messages. The findings of this work has demonstrated the feasibility of immune theory in risk measurement that eventually assisting users in their decision making. � Springer International Publishing AG, part of Springer Nature 2018.
Subjects

Dendritic Cell Algori...

Deterministic Dendrit...

Risk classification

Signals processing

Text mining

Text spam risk assess...

Cells

Cytology

Data mining

Decision making

Decision theory

Learning systems

Signal processing

Space division multip...

Text processing

Dendritic cell algori...

Dendritic cell algori...

Risk classification

Signals processing

Text mining

Risk assessment

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia