Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Other Publications
  4. Critical Evaluation of Green Synthesized Silver Nanoparticles-Kaempferol for Antibacterial Activity Against Methicillin-Resistant Staphylococcus aureus
 
  • Details
Options

Critical Evaluation of Green Synthesized Silver Nanoparticles-Kaempferol for Antibacterial Activity Against Methicillin-Resistant Staphylococcus aureus

Journal
International Journal of Nanomedicine
ISSN
1339-1350
Date Issued
2024
Author(s)
Ariff Haikal Hairil Anuar
Universiti Sains Islam Malaysia
Siti Aisyah Abd Ghafar
Universiti Sains Islam Malaysia
Rohazila Mohamad Hanafiah 
Universiti Sains Islam Malaysia 
Vuanghao Lim
Nur Farah Atiqah Mohd Pazli
Universiti Sains Islam Malaysia
DOI
10.2147/IJN.S431499
Abstract
Introduction: This study aimed to characterize silver nanoparticles-kaempferol (AgNP-K) and its antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA). Green synthesis method was used to synthesize AgNP-K under the influence of temperature and different ratios of silver nitrate (AgNO3 and kaempferol).
Methods: AgNP-K 1:1 was synthesized with 1 mM kaempferol, whereas AgNP-K 1:2 with 2 mM kaempferol. The characterization of AgNP-K 1:1 and AgNP-K 1:2 was performed using UV–visible spectroscopy (UV–Vis), Zetasizer, transmission electron microscopy (TEM), scanning electron microscopy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The antibacterial activities of five samples (AgNP-K 1:1, AgNP-K 1:2, commercial AgNPs, kaempferol, and vancomycin) at different concentrations (1.25, 2.5, 5, and 10 mg/mL) against MRSA were determined via disc diffusion assay (DDA), minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) assay, and time-kill assay.
Results: The presence of a dark brown colour in the solution indicated the formation of AgNP-K. The UV–visible absorption spectrum of the synthesized AgNP-K exhibited a broad peak at 447 nm. TEM, Zetasizer, and SEM-EDX results showed that the morphology and size of AgNP-K were nearly spherical in shape with 16.963 ± 6.0465 nm in size. XRD analysis confirmed that AgNP-K had a crystalline phase structure, while FTIR showed the absence of (-OH) group, indicating that kaempferol was successfully incorporated with silver. In DDA analysis, AgNP-K showed the largest inhibition zone (16.67 ± 1.19 mm) against MRSA as compared to kaempferol and commercial AgNPs. The MIC and MBC values for AgNP-K against MRSA were 1.25 and 2.50 mg/mL, respectively. The time-kill assay results showed that AgNP-K displayed bacteriostatic activity against MRSA. AgNP-K exhibited better antibacterial activity against MRSA when compared to commercial AgNPs or kaempferol alone.
Subjects

nanoparticles

silver nanoparticles

green synthesis

kaempferol

methicillin-resistant...

File(s)
Loading...
Thumbnail Image
Name

Critical Evaluation of Green Synthesized Silver Nanoparticles-Kaempferol for Antibacterial Activity Against Methicillin-Resistant Staphylococcus aureus.pdf

Size

5.22 MB

Format

Adobe PDF

Checksum

(MD5):4d6bf8d6fd2d4592d96f56c48d8b44b9

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia