Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Web of Science_WoS
  4. On solving an n x n system of nonlinear Volterra integral equations by the Newton-Kantorovich method
 
  • Details
Options

On solving an n x n system of nonlinear Volterra integral equations by the Newton-Kantorovich method

Journal
Scienceasia
Date Issued
2016
Author(s)
Hameed, HH
Eshkuvatov, ZK
Long, NMAN
DOI
10.2306/scienceasia1513-1874.2016.42S.011
Abstract
We consider an n x n system of nonlinear integral equations of Volterra type (nonlinear VIEs) arising from an economic model. By applying the Newton-Kantorovich method to the nonlinear VIEs we linearize them into linear Volterra type integral equations (linear VIEs). Uniqueness of the solution of the system is shown. An idea has been proposed to find the approximate solution by transforming the system of linear VIEs into a system of linear Fredholm integral equations by using sub-collocation points. Then the backward Newton interpolation formula is used to find the approximate solution at the collocation points. Each iteration is solved by the Nystrom type Gauss-Legendre quadrature formula (QF). It is found that by increasing the number of collocation points of QF with fewer iterations, a high accurate approximate solution can be obtained. Finally, an illustrative example is demonstrated to validate the accuracy of the method.
Subjects

nonlinear integral op...

Volterra integral typ...

Gauss-Legendre method...

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia