Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Other Publications
  4. Background Subtraction In Urban Traffic Video Using Recursive Sigma-delta Mixture Model
 
  • Details
Options

Background Subtraction In Urban Traffic Video Using Recursive Sigma-delta Mixture Model

Journal
Journal of Engineering and Applied Sciences
Date Issued
2016
Author(s)
Ma`moun Al- Smadi
Khairi Abdulrahim
Rosalina Abdul Salam
Ahmad Alajarmeh
DOI
10.36478/jeasci.2016.414.419
Abstract
Motion segmentation is a fundamental step in urban traffic surveillance systems, since it provides necessary information for further processing. Background subtraction techniques are widely used to identify foreground moving vehicles from static background scene. Conventional techniques utilize single background model or Gaussian mixture model, which involves either poor adaptation or high computation.The complexity of urban traffic scenarios lies in pose and orientation variations, slow or temporarily stopped vehicles and sudden illumination variations. To address these problems Sigma-Delta Mixture Model (SDMM)is proposed. Mixed distributions are updated dynamically based on matching and contribution in the two order temporal statistics. The constant amplification factor is replaced byweightedfactor to update the variance rate over its temporal activity. The proposed technique achieve robust and accurate performance,which improves adaptation capability with balanced sensitivity and reliability, moreover, integerlinear operations enables the real-time capability.
File(s)
Loading...
Thumbnail Image
Name

Background Subtraction In Urban Traffic Video Using Recursive Sigma-delta Mixture Model.pdf

Size

609.53 KB

Format

Adobe PDF

Checksum

(MD5):dec757ac33ce6755dc5ecfdd381031f6

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia