Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Proceedings
  3. Conferences
  4. INSAN JUNIOR RESEARCHERS INTERNATIONAL CONFERENCE (iJURECON)
  5. 2020 iJURECON
  6. Numerical Solution of Homogeneous One-Dimensional Heat Equation Using Crank-Nicolson Method
 
  • Details
Options

Numerical Solution of Homogeneous One-Dimensional Heat Equation Using Crank-Nicolson Method

Date Issued
2021-02-18
Author(s)
Faizzuddin Jamaluddin
Ahmad Danial Hidayatullah Badrolhisam
Muhammad Arif Hannan Mohamed
Muhammad Aniq Qayyum Mohamad Sukry
Norazlina Subani
Abstract
A partial differential equation is an equation which includes derivatives of an unknown function with respect to two or more independent variables. The numerical solution is needed to obtain the solution of partial differential equation. To solve these partial differential equations, the appropriate boundary and initial conditions are needed. The general solution is dependent not only on the equation, but also on the boundary conditions. In other words, these partial differential equations will have different general solution when paired with different sets of boundary conditions. In the present study, the homogeneous one-dimensional heat equation will be solved numerically by using Implicit Crank Nicolson method. Our main objective is to determine the flow characteristics of heat equation with Dirichlet boundary condition on homogeneous heat equation. The method of Implicit Crank Nicolson has been chosen because of the stability of the method. The results have been compared with the exact analytical solution. The validated results show that the numerical results remains same as the exact analytical solutions. The results show that the changes of the temperature profile depends on the types of boundary conditions. The boundary conditions will be affected the flow characteristics of the heat equation.
Subjects

GENIUS INAQ, heat equ...

File(s)
Loading...
Thumbnail Image
Name

Numerical Solution of Homogeneous One-Dimensional Heat Equation Using Crank-Nicolson Method.pdf

Size

721.84 KB

Format

Adobe PDF

Checksum

(MD5):dffb2f17a81a11397cc66fb07bab66ac

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia