Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. USIM Journals
  3. Malaysian Journal of Science, Health & Technology (MJoSHT)
  4. Identification of Residential and Commercial Area using Convolutional Neural Network
 
  • Details
Options

Identification of Residential and Commercial Area using Convolutional Neural Network

Journal
Malaysian Journal of Science Health & Technology
ISSN
2601-0003
Date Issued
2024-10-08
Author(s)
Valliappan Raman
Putra Sumari
Prabhavathy M
Sundresan Perumal
Universiti Sains Islam Malaysia
DOI
10.33102/mjosht.v10i2.396
Abstract
<jats:p>Abstract— Image classification of land use using aerial scene classification has become increasingly common around the world. Utilizing the power of Convolutional Neural Networks (CNNs), identification of various city township areas using satellite imagery has become more efficient compared to the previous manual labeling. The objective of this research is to build a convolutional neural network model for residential and commercial area identification. In the research, we also adopted Inception V3 and VGG16 to develop two transfer learning models for the identification system. The Inception V3-based model achieved the highest overall accuracy value of 100%, showing its effectiveness in accurate residential and commercial area identification. The proposed CNN model achieved an accuracy of 99%, while the VGG-16 model with all configurations being frozen achieved 99% accuracy.</jats:p>
Subjects

CNNs

Transfer Learning

Satellite Image

File(s)
Loading...
Thumbnail Image
Name

Leveraging Inception V3 and VGG16 for Accurate Identification of Residential and Commercial Zones.pdf

Size

780.42 KB

Format

Adobe PDF

Checksum

(MD5):6675292aa9a34a82ec5433f30b5e7fa0

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia