Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Scopus
  4. Zno coated optical fiber for alcohol sensing applications
 
  • Details
Options

Zno coated optical fiber for alcohol sensing applications

Journal
Solid State Phenomena
Date Issued
2020
Author(s)
Rashid A.R.A.
Latiff A.N.A.
Mukhtar W.M.
Taib N.A.M.
Suhaimi S.
Dasuki K.A.
DOI
10.4028/www.scientific.net/SSP.307.70
Abstract
Plastic optical fiber sensing that coated with ZnO is developed and its interaction with ethanol and methanol solution is investigated. ZnO is synthesized sonochemically by using the bath type sonicator. The optical properties such as transmittance, absorbance and refractive index of ZnO is determined by using ultraviolet-visible (UV-Vis) spectrophotometer. Then, the cladding of plastic optical fiber (POF) is etched by using acetone solution, sand paper and deionized water. The unclad region is coated with ZnO and being immersed in the solution of ethanol and methanol in the range from 0 v/v% to 50 v/v%. The performance of ZnO coated POF is achieved by obtaining the output power value that transmitted via power meter. The result of this research is as the alcohol concentration increase, the output power value increase. Refractive index of ZnO is varied due to interaction between modified-cladding area and alcohol. Besides that, more light propagates inside the fiber when the sensor is tested under methanol solution compare to ethanol. Thus, the output power ratio increments as well as the sensor efficiency and shows the effectiveness of POF sensor to detect varied alcohol concentration. � 2020 Trans Tech Publications Ltd, Switzerland.
Subjects

Alcohol sensor

Plastic Optical Fiber...

Zinc Oxide

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia