Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Staff Publications
  3. Scopus
  4. Improving knowledge extraction from texts by generating possible relations
 
  • Details
Options

Improving knowledge extraction from texts by generating possible relations

Journal
Lecture Notes in Engineering and Computer Science
Date Issued
2017
Author(s)
Nur Fatin Nabila Mohd Rafei Heng 
Universiti Sains Islam Malaysia 
Nurlida Basir 
Universiti Sains Islam Malaysia 
Mamat A.
Deris M.M.
Abstract
Existing research focus on extracting the concepts and relations within a single sentence or in subject-object-object pattern. However, a problem arises when either the object or subject of a sentence is "missing" or "uncertain", which will cause the domain texts to be improperly presented as the relationship between concepts is no extracted. This paper proposes a solution for the enrichment of the knowledge of domain text by finding all possible relations. The proposed method suggests the appropriate or the most likely term for an uncertain subject or object of a sentence using the probability theory. In addition, the method can extract the relations between concepts (i.e. subject and object) that appear not only in a single sentence, but also in different sentences by using a synonym of the predicates. The proposed method has been tested and evaluated with a collection of domain texts that describe tourism. Precision, recall, and f-score metrics have been used to evaluate the results of the experiments. Copyright International Association of Engineers.
Subjects

Non-taxonomic

Ontology

Relation Extraction

Ontology

Probability

Knowledge extraction

Most likely

Non-taxonomic

Object patterns

Probability theory

Relation extraction

Relationship between ...

Research focus

Extraction

Welcome to SRP

"A platform where you can access full-text research
papers, journal articles, conference papers, book
chapters, and theses by USIM researchers and students.”

Contact:
  • ddms@usim.edu.my
  • 06-798 6206 / 6221
  • USIM Library
Follow Us:
READ MORE Copyright © 2024 Universiti Sains Islam Malaysia