Publication: Blood cell image segmentation using hybrid K-means and median-cut algorithms
dc.Conferencecode | 89794 | |
dc.Conferencedate | 25 November 2011 through 27 November 2011 | |
dc.Conferencelocation | Penang | |
dc.Conferencename | 2011 IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2011 | |
dc.citedby | 7 | |
dc.contributor.affiliations | Faculty of Science and Technology | |
dc.contributor.affiliations | Universiti Utara Malaysia (UUM) | |
dc.contributor.affiliations | Universiti Sains Islam Malaysia (USIM) | |
dc.contributor.author | Muda T.Z.T. | en_US |
dc.contributor.author | Salam R.A. | en_US |
dc.date.accessioned | 2024-05-28T08:27:06Z | |
dc.date.available | 2024-05-28T08:27:06Z | |
dc.date.issued | 2011 | |
dc.description.abstract | In blood cell image analysis, segmentation is crucial step in quantitative cytophotometry. Blood cell images have become particularly useful in medical diagnostics tools for cases involving blood. In this paper, we present a better approach on merging segmentation algorithms of K-means and Median-cut for colour blood cells images. Median-cut technique will be employed after comparing best outcomes from Fuzzy c-means, K-means and Means-shift. We used blood cell images infected with malaria parasites as cell images for our research. The result of proposed method shows better improvement in terms of object segmentations for further feature extraction process. � 2011 IEEE. | |
dc.description.nature | Final | en_US |
dc.identifier.ArtNo | 6190529 | |
dc.identifier.doi | 10.1109/ICCSCE.2011.6190529 | |
dc.identifier.epage | 243 | |
dc.identifier.isbn | 9781460000000 | |
dc.identifier.scopus | 2-s2.0-84862059145 | |
dc.identifier.spage | 237 | |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84862059145&doi=10.1109%2fICCSCE.2011.6190529&partnerID=40&md5=21ca4f91df11a5970948f797d9e2ac62 | |
dc.identifier.uri | https://oarep.usim.edu.my/handle/123456789/8777 | |
dc.language | English | |
dc.language.iso | en_US | |
dc.relation.ispartof | Proceedings - 2011 IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2011 | |
dc.source | Scopus | |
dc.subject | Blood Cell Images | en_US |
dc.subject | Fuzzy c-means | en_US |
dc.subject | K-means | en_US |
dc.subject | Means-shift | en_US |
dc.subject | Median-cut | en_US |
dc.subject | Segmentation | en_US |
dc.subject | Blood cell images | en_US |
dc.subject | Fuzzy C mean | en_US |
dc.subject | K-means | en_US |
dc.subject | Means-shift | en_US |
dc.subject | Median-cut | en_US |
dc.subject | Blood | en_US |
dc.subject | Cells | en_US |
dc.subject | Control systems | en_US |
dc.subject | Cytology | en_US |
dc.subject | Feature extraction | en_US |
dc.subject | Fuzzy systems | en_US |
dc.subject | Image segmentation | en_US |
dc.title | Blood cell image segmentation using hybrid K-means and median-cut algorithms | |
dc.type | Conference Paper | en_US |
dspace.entity.type | Publication |